期刊文献+

Semantics in Image and Video Retrieval Systems 被引量:1

Semantics in Image and Video Retrieval Systems
原文传递
导出
摘要 Multimedia document annotation is used in traditional multimedia databasesystems. However, without the help of human beings, it is very difficult to extract the semanticcontent of multimedia automatically. On the other hand, it is a tedious job to annotate multimediadocuments in large databases one by one manually. This paper first introduces a method to constructa semantic net-work on top of a multimedia database. Second, a useful and efficient annotationstrategy is presented based on the framework to obtain an accurate and rapid annotation of anymultimedia databases. Third, two methods of joint similarity measures for semantic and low-levelfeatures are evaluated . Multimedia document annotation is used in traditional multimedia databasesystems. However, without the help of human beings, it is very difficult to extract the semanticcontent of multimedia automatically. On the other hand, it is a tedious job to annotate multimediadocuments in large databases one by one manually. This paper first introduces a method to constructa semantic net-work on top of a multimedia database. Second, a useful and efficient annotationstrategy is presented based on the framework to obtain an accurate and rapid annotation of anymultimedia databases. Third, two methods of joint similarity measures for semantic and low-levelfeatures are evaluated .
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2002年第4期57-63,共7页 中国邮电高校学报(英文版)
关键词 image retrieval video retrieval semantic-based information retrieval MPEG-7 CONTENT-BASED FEATURE SEMANTICS image retrieval video retrieval semantic-based information retrieval MPEG-7 content-based feature semantics
  • 相关文献

参考文献14

  • 1GUDIVADA V N, RAGHAVAN V V. Content-based image retrieval system[J]. Computer, 1995,28(9):18-22.
  • 2FLICKNER M, SAWHNEY H, et al. Query by image and video content: the QBIC system[J]. Computer, 1995,28(9):23-31.
  • 3SMEULDERS W M, WORRING M, et al. Content-based image retrieval at the end of the early years[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000,22(12):1349-1379.
  • 4AL-KHATIB W, DAY F Y, et al. Semantic modeling and knowledge representation in multimedia databases[J]. IEEE Trans on Knowledge and Data Engineering, 1999,11(1):64-80.
  • 5CHANG Shih-fu, CHEN WILLIAM, HARI SUNDARAM. Semantic visual templates: linking visual features to semantics[A]. Proc. IEEE Int'l Conf Image Processing (ICIP'98)[C]. Chicago(Illinois): 1998,531-535.
  • 6DDL Working Draft 4.0, ISO/IEC JTC1/SC29/WG11 MPEG 00/N3575, July 2000, Beijing.
  • 7MPEG-7 Multimedia Description Schemes XM (Version 3.1), ISO/IEC JTC1/SC 29/WG11/M6155, July 2000, Beijing.
  • 8Text of ISO/IEC FCD 15938-1 Information technology-Multimedia content description interface-Part 1 Systems, ISO/IEC JTC1/SC29/WG11 MPEG01/N4001, March 2001, Singapore
  • 9CHENDu,WANGXue-qing,等.An Image/Video Self-Description Scheme for MPEG-7[J].The Journal of China Universities of Posts and Telecommunications,2001,8(1):1-6. 被引量:1
  • 10ZHAO Rong, WILLIAM GROSKY I. Narrowing the semantic gap-improved text-based web document retrieval using visual features[J]. IEEE Trans on Multimedia, 2002,4(2):189-200.

二级参考文献6

  • 1BACHJR,FULLERC,HAMPAPURA,etal.Virageimagesearchengine:anopenframeworkforimagemanagement[C].SymposiumonElectronicImaging:ScienceandTechnologyStorage&RetrievalforImageandVideoDatabaseIV,IS&T/SPIE,SanJose,CA,Feb.1996.
  • 2ALIMDawood,MOHAMMEDG.Content-basedMPEGvideotrafficmodeling[J].IEEETransactiononMultimedia,1999,1(3):77-87.
  • 3FRANKN,ADAMT.Lindsay.EverythingyouwantedtoknowaboutMPEG-7,part1[J].IEEEMultimediaMagazine,1999.65-77.
  • 4KUOTCT,CHENALP.Content-basedqueryprocessingforvideodatabase[J].IEEETransactiononMultimedia,2000,2(7):1-13.
  • 5CHANGSF,CHENW,MENGHJ,etal.Findingimages/videosinlargearchives[J].CNRIDigitalLibraryMagazine,1997.
  • 6FLICKNERM,SAWHNEYH,NIBLACKW,etal.Querybyimageandvideocontent:theQBICsystem[J].IEEEComputerMagazine,1998,28(9):23-32.

同被引文献12

  • 1MCCANE B,NOVINS K,CRANNITCH D,et al.On Benchmarking Optical Flow[J].Computer Vision and Image Understanding,2001,84 (1):126-143.
  • 2SONG S MOON-HO,KWON TAE-HOON.On Detection of Gradual Scene Changes for Parsing of Video Data[ C ] // Proceedings of SPIE,Storage And Retrieval for Image and Video Databases.San Jose,CA,USA:SPIE,1997,3312:404-409.
  • 3KOPRINSKAL I,CARRATO S.Tmporal Video Segmentation:A Survey[C] //Signal Processing:Image Communication,2001,16 (5):477-500.
  • 4SETCHELL C J,CAMPBE llN W.Using Colour Gabor Texture Features for Scene Understanding[ C] //7th International Conference on Image Processing and Its Applications,Institution of Electrical Engineers.Manchester,United Kingdom:[ s.n],1999:372-376.
  • 5TOURAPIS A M.ISO/IEC JTCl/S C29/WGl1 MPEG2000/M5867 (2000),Core Experiment on Block Based Motion Estimation[ S].
  • 6TOURAPIS A M,AU O C,LION M L,et al.In ISO/IEC JTCl/S C29/WG11 MPEG2000/m5866 (2000),Fast Block Matching Motion Estimation Using Predictive Motion Vector Field Adaptive Search Technique (PMVFAST)[ S].
  • 7ZHU S,MA K K.A New Diamond Search Algorithm for Fast Block-Matching Motion Estimation[J].IEEE Trans Image Processing,2000,9:287-290.
  • 8PO LAI-MAN,MA WING-CHUNG.A Novel Four-Step Search Algorithm for Fast Block Motion Estimation[ J ].IEEE Trans Circuits Syst Video Technol,1996,6 (3):313-317.
  • 9沈会良,李志能.基于矩和小波变换的数字、字母字符识别研究[J].中国图象图形学报(A辑),2000,5(3):249-252. 被引量:36
  • 10金红,周源华.基于内容检索的视频处理技术[J].中国图象图形学报(A辑),2000,5(4):276-283. 被引量:38

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部