摘要
In order to investigate the effeits of late nitrogen application on nitrogen translocation and protein fractions, three genotypes differing in protein content were studied in pot experiments at low and high fertility regimes with late foliar nitrogen application. At high fertility, late nitrogen application increased N translocation and improved N translocation efficiency greatly, however, cultivar differences were found at low fertility and late nitrogen application increased both leaf and chaff N translocation, and increased culm N translocation only at high fertility. Relative contributions of vegetative components to N translocation efficiency were altered by late nitrogen application. Albumin and gliadin contents at maturity were decreased by late nitrogen application for all cultivars used, and cultivar variations for globulins were also observed. Xin Kehan No. 9, the high yielding, low grain protein content cultivar remained no change for glutenin content to late nitrogen application, Dongnong 7742, the high yielding, high grain protein content, decreased slightly, and Roblin, high grain protein but low yielding cultivar decreased only at hihg fertility. Residual protein contents were significantly increased by late nitrogen application for all cultivars. It was concluded that nitrogen applied at later stage could be used efficiently noly at high fertility, and most of the N translocated were used for the synthesis of residual proteins.
In order to investigate the effeits of late nitrogen application on nitrogen translocation and protein fractions, three genotypes differing in protein content were studied in pot experiments at low and high fertility regimes with late foliar nitrogen application. At high fertility, late nitrogen application increased N translocation and improved N translocation efficiency greatly, however, cultivar differences were found at low fertility and late nitrogen application increased both leaf and chaff N translocation, and increased culm N translocation only at high fertility. Relative contributions of vegetative components to N translocation efficiency were altered by late nitrogen application. Albumin and gliadin contents at maturity were decreased by late nitrogen application for all cultivars used, and cultivar variations for globulins were also observed. Xin Kehan No. 9, the high yielding, low grain protein content cultivar remained no change for glutenin content to late nitrogen application, Dongnong 7742, the high yielding, high grain protein content, decreased slightly, and Roblin, high grain protein but low yielding cultivar decreased only at hihg fertility. Residual protein contents were significantly increased by late nitrogen application for all cultivars. It was concluded that nitrogen applied at later stage could be used efficiently noly at high fertility, and most of the N translocated were used for the synthesis of residual proteins.