期刊文献+

小波除噪、神经网络与发动机故障诊断 被引量:3

Wavelet Noise Filtering, Neural Network and Engine Fault Diagnosis
下载PDF
导出
摘要 给出了利用起动电压波形来检测气密性这一简单易行的实验原理与方法。并对代表性波形进行小波除噪处理,在此基础上,提出了6个故障信息特征参数,通过对径向基神经网络的训练和检测,证明该神经网络能够成功的进行故障模式的辨识。从而为发动机压缩性故障诊断提供一个较好的方法。 In this paper an experiment method, of which main purpose was to analyze the cylinder gastightness from starting voltage waveforms was discussed. The noise was filtered from typical waveforms, and 6 fault symptom parameters were put forward. The Radial Basis Function Netword (RBFN) was trained by putting these symptom parameters in. This network can distinguish the fault modes preferably; therefore it will be favourable to diagnose the cylinder compression ratio fault.
机构地区 解放军理工大学
出处 《内燃机工程》 EI CAS CSCD 北大核心 2002年第6期38-41,46,共5页 Chinese Internal Combustion Engine Engineering
关键词 小波除噪 神经网络 发动机 故障诊断 内燃机 气缸压缩机 I. C. Engine Wavelet Noise Filtering RBFN Fault Diagnosis
  • 相关文献

参考文献2

二级参考文献3

  • 1[1]Brani Vidakovic,Concha Bielza Lozoya. On time-dependent wavelet denoising. IEEE Transaction on Signal Processing,1998,46(9) :2549~2554
  • 2[2]Zheng G T, McFadden P D.A time-frequency distribution for analysis of signals with transient components and its application to vibration analysis. Transaction of the ASME on Journal of Vibration and Acoustics, 1999, 121 (7):328~333
  • 3[3]Qin Qianqing , Yang Zongkai . Practical wavelet analysis .Xi'an:The Press of Xi'an University of Electronic Science and Technology, 1995

共引文献12

同被引文献22

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部