期刊文献+

相同放电面积不同边界介质阻挡放电

Influence of Same Discharge Area and Different Boundary on Dielectric Barrier Discharge
下载PDF
导出
摘要 利用对介质阻挡放电装置,在放电电极上覆盖上相同面积不同边界的绝缘介质,观察它的放电的特性,对其放电模式及放电产生的等离子体重要参数电子激发温度进行了记录与计算.实验结果表明:由于放电具有相同的面积,导致间隙间的电容值相同,所以导致击穿电压、放电的模式、放电产生等离子体中的电子激发温度基本相同. By using the dielectric barrier discharge set-up,the electrode is covered by insulating material,which has same area and different boundary.The pattern and the electron excited temperature was record during the discharge.The result shows that the voltage of breakdown,the discharge mode and the electron excited temperature in the plasmas are sameness.This caused by same discharge area,because the same area means same impedance in the dielectric barrier discharge.
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2007年第S1期212-214,共3页 Journal of Hebei University(Natural Science Edition)
基金 国家自然科学基金资助项目(10375015) 河北省自然科学基金资助项目(A2004000086)
关键词 介质阻挡放电 放电面积 边界 电子激发温度 dielectric barrier discharge discharge area boundary electron excited temperature
  • 相关文献

参考文献8

  • 1王艳辉,王德真.大气压下多脉冲均匀介质阻挡放电的研究[J].物理学报,2005,54(3):1295-1300. 被引量:40
  • 2黄玉水,胡长生,张仲超.基于闭环控制策略的负载谐振型臭氧发生器电源[J].电工技术学报,2004,19(1):91-94. 被引量:26
  • 3彭燕昌,严萍,舒立,张适昌.介质阻挡放电用大功率高频高压电源的研究[J].高电压技术,2002,28(B12):35-36. 被引量:39
  • 4FRIDMAN A,CHIROKOV A,GUTSOL A,et al.Non-thermal atmospheric pressure discharges[].Journal of Physics D Applied Physics.2005
  • 5ROTH J,REECE R,JOZEF D X,et al.The physics and phenomenology of one atmosphere uniform glow discharge plasma(OAUGDP)reactors for surface treatment applications[].Journal of Physics D Applied Physics.2005
  • 6HONG S,XU X J.On the surface charge in the dielectric barrier discharge[].Journal of Fudan University(Natural science).2001
  • 7CHOI J H,LEE T I,HAN I,et al.Investigation of the transition between glow and streamer discharges in atmospheric air[].Plasma Sources Science Technology.2006
  • 8HAHN T. D.,WIESE W. L.Atomic transition probability ratio between some Ar I 4s-4p and 4s-5p transitions[].Phys Rev A.1990

二级参考文献20

  • 1Yokoyama T, Kogoma M, Moriwaki T and Okazaki S 1990 J.Phys. D: Appl. Phys. 23 1125.
  • 2Okazaki S, Kogoma M, Uehara M and Kimura Y 1993 J. Phys.D: Appl. Phys. 26 889.
  • 3Massines F, Rabehi A, Decomps P, Gadri R B, Segur P and Mayoux C 1998 J. Appl. Phys. 83 2950.
  • 4Gadri R B et al 1999 IEEE Trans. Plasma Sci. 27 36.
  • 5Gherardi N, Gouda G, Gat E, Rabehi A and Massines F 2000 IEEE Trans. Plasma Sci. 28 340.
  • 6Gherardi N and Massines F 2001 IEEE Trans. Plasma Sci. 29 536.
  • 7Mangolini L, Orlov K, Kortshagen U, Heberlein J and Kogelschatz U 2002 Appl. Phys. Lett. 80 1723.
  • 8Akishev Y S, Dem'yanov A V, Karal'nik V B, Pan'kin M V and Trushkin N I 2001 Plasma Phys. Rep. 27 164.
  • 9Golubovskii Y B, Maiorov V A, Behnke J and Behnke J F 2003 J.Phys. D: Appl. Phys. 36 39.
  • 10Scharferter D L and Gummel H K 1969 IEEE Trans.Electron.Devices ED-16 64.

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部