期刊文献+

基于FFT和EWT的转子振动信号特征提取方法研究 被引量:5

On the Feature Extraction Method for Rotor Vibration Signal based on FFT and EWT
下载PDF
导出
摘要 为了充分挖掘转子振动信号的特征信息,研究提出了一种基于FFT和EWT的转子振动信号特征提取方法。从转子实验台获取转子四种状态的振动信号,将转子特征频率和EWT模态分量组合构成多维特征向量,利用K均值聚类法对比不同方案识别转子状态的正确率,选出最优的特征向量方案,达到了较高的状态识别正确率。 In order to get the full features of the rotor vibration signal,a feature extraction method is proposed based on the fast Fourier transformation(FFT)and the empirical wavelet transform(EWT).The vibration signals of four states of the rotor are obtained from the rotor tests.Multi-dimensional eigenvectors are then composed with the rotor characteristic frequencies and the EWT modal components.The K-means clustering method is used to compare the accuracy of different schemes for identifying the rotor state,and the optimal eigenvector scheme is selected.The results show that high accuracy is achieved in the state recognition with the proposed method.
作者 乐毅 李鸿 游超 胡晓 刘东 肖志怀 LE Yi;LI Hong;YOU Chao;HU Xiao;LIU Dong;XIAO Zhihuai(Hubei Xuanen Dongping Hydropower Co.,Ltd.,Enshi 445500,China;School of Power and Mechanical Engineering,Wuhan University,Wuhan 430072,China)
出处 《水电与新能源》 2019年第4期34-38,65,共6页 Hydropower and New Energy
关键词 经验小波变换 频谱分析 特征提取 故障识别 empirical wavelet transform spectrum analysis feature extraction fault identification
  • 相关文献

参考文献5

二级参考文献41

  • 1李志农,吕亚平,范涛,冷传广.基于经验模态分解的机械故障欠定盲源分离方法[J].航空动力学报,2009,24(8):1886-1892. 被引量:18
  • 2胡爱军,唐贵基,安连锁.基于数学形态学的旋转机械振动信号降噪方法[J].机械工程学报,2006,42(4):127-130. 被引量:95
  • 3HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceeding of the Royal Society A,1998, 454(1971): 903-995.
  • 4YU D J, YANG Y, CHENG J SH. Application of time-frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis[J]. Measurement, 2007, 40(9): 823-830.
  • 5YANG ZH, YU ZH, C/-IAO X, et al. Application of Hilbert-Huang Transform to acoustic emission signal for bum feature extraction in surface grinding process[J]. Measurement, 2014, 47: 14-21.
  • 6WANG Y S, MA Q H, ZHU Q, et al. An intelligent approach for engine fault diagnosis based on Hilbert-Huang transform and support vector machine [J]. Applied Acoustics, 2014, 75(1): 1-9.
  • 7RAI V K, MOHANTY A R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform [J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2607-2615.
  • 8ANTONINO-DAVIU J, JOVER RODRIGUEZ P, RIERA-GUASP M, et al. Transient detection of eccentricity-related components in induction motors through the Hilbert-Huang Transform [J]. Energy Conversion and Management, 2009, 50(7): 1810-1820.
  • 9GEORGOULAS G; LOUTAS T, STYLIOS D C, et al. Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition [J]. Mechanical Systems and Signal Processing, 2013, 41(1-2): 510-525.
  • 10GILLES J. Transactions Empirical Wavelet Transform [J]. IEEE on Signal Processing, 2013, 61(16): 3999-4010.

共引文献232

同被引文献64

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部