摘要
目标跟踪是计算机视觉中的关键问题,有着广泛的应用,由于现实场景中仍存在着众多问题,目标跟踪仍然具有巨大的研究价值。针对传统的核相关滤波器(KCF)算法在跟踪过程中存在的问题,文章提出一种结合位置相关滤波器和尺度相关滤波器的目标跟踪算法,同时依据跟踪效果,采取了自适应的模型更新策略。文章选取了公开视频序列进行测试,相较于KCF算法跟踪准确率提高了10%,尤其在光照变化、目标尺度变化等情况下有较强的适应性。
Target tracking is a key problem in computer vision and has a wide range of applications.Since there are still many problems in the real scene,target tracking still has great research value.Aiming at the problems of the traditional kernel correlation filter(KCF)algorithm in the tracking process,this paper proposes a tracking algorithm which combines position correlation filter and scale correlation filter,an adaptive model updating strategy is adopted according to the tracking effect.This paper selects open video sequences for testing,compared with KCF algorithm,the tracking accuracy is improved by 10%,especially in the case of illumination change and target scale change.
作者
许二敏
黄俊
余忠永
施新岚
Xu Ermin;Huang Jun;Yu Zhongyong;Shi Xinlan(School of Communications and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Key Laboratory of Signal and Information Processing of Chongqing,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处
《信息通信》
2019年第4期1-4,共4页
Information & Communications
基金
国家自然科学基金(61671095)
信号与信息处理重庆市市级重点实验室建设项目(CSTC2009CA2003)
关键词
相关滤波器
目标跟踪
尺度预测
峰值检测
自适应跟踪
correlation filter
target tracking
scale prediction
peak detection
adaptive tracking