期刊文献+

HHT改进及其在风力发电机故障诊断中的应用 被引量:4

Improved HHT and Its Application in Wind Turbine Bearing Fault Diagnosis
原文传递
导出
摘要 为解决风力发电机轴承故障特征难以提取的问题,提出一种基于相关分析的改进的HHT方法。该方法利用EMD是近似正交分解的特征,将EMD产生的残差分量与原信号间的相关系数作为阈值,对IMF进行自适应筛选,解决了由三次样条拟合误差引发的伪IMF问题。通过仿真分析对该方法进行了验证。使用该方法分析D70型1.5 MW风力机承振动信号,诊断出了轴承故障,进而可以将该方法应用于工程实践中。 To solve the problems in extracting wind turbine bearing fault features,the improved HHT based on correlation analysis is proposed. By using EMD,an approximately orthogonal decomposition method,the correlation coefficient between the residual component and the original signal is taken as a threshold to adaptively filter IMF,solving the problem of the pseudo-IMF caused by cubic spline fitting error. Simulation analysis has verified this method. This method was employed to analyze the bearing vibration signal of D70 1. 5 MW wind turbine,and diagnose bearing faults. Thus the method can be applied to engineering practice.
出处 《华东电力》 北大核心 2014年第6期1123-1128,共6页 East China Electric Power
基金 国家自然科学基金项目(50975180 51005159)~~
关键词 故障特征提取 HHT EMD 伪IMF 风力发电机 轴承故障诊断 fault feature extraction HHT EMD pseudo-IMF wind turbine bearing
  • 相关文献

参考文献8

  • 1谷泉,陈长征,周昊,张士伟.滚动轴承故障诊断新方法研究[J].机械设计与制造,2013(9):117-119. 被引量:19
  • 2陈雪峰,李继猛,程航,李兵,何正嘉.风力发电机状态监测和故障诊断技术的研究与进展[J].机械工程学报,2011,47(9):45-52. 被引量:194
  • 3Andrew Kusiak,Anoop Verma.Analyzing bearing faults in wind turbines: A data-mining approach[J].Renewable Energy.2012
  • 4Da-Chao Lin,Zhang-Lin Guo,Feng-Ping An,Fan-Lei Zeng.Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression[J].Mechanical Systems and Signal Processing.2012
  • 5Wenxian Yang,Richard Court,Peter J. Tavner,Christopher J. Crabtree.Bivariate empirical mode decomposition and its contribution to wind turbine condition monitoring[J].Journal of Sound and Vibration.2011(15)
  • 6Z. Hameed,Y.S. Hong,Y.M. Cho,S.H. Ahn,C.K. Song.Condition monitoring and fault detection of wind turbines and related algorithms: A review[J].Renewable and Sustainable Energy Reviews.2007(1)
  • 7Z.K. Peng,Peter W. Tse,F.L. Chu.An improved Hilbert–Huang transform and its application in vibration signal analysis[J].Journal of Sound and Vibration.2004(1)
  • 8Huang Norden E.,Shen Zheng,Long Steven R.,Wu Manli C.,Shih Hsing H.,Zheng Quanan,Yen Nai-Chyuan,Tung Chi Chao,Liu Henry H..The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences . 1998 (1971)

二级参考文献37

共引文献220

同被引文献45

  • 1侯新国,吴正国,夏立,卜乐平.基于Park矢量模信号小波分解的感应电机轴承故障诊断方法[J].中国电机工程学报,2005,25(14):115-119. 被引量:30
  • 2钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社,2007.119-131.
  • 3RIBRANT J,BERTLING L. M. Survey of Failures in Wind Power Systems with Focus on Swedish Wind Power Plants During 1997-2005 [J]. IEEE Transaction on Energy Conversion,2007,22(1): 167-173.
  • 4RIBRANT J,BERTLING L. M. Reliability Performance and Maintenance-a Survey of Failures in Wind Power Systems [C]. IEEE Power Engineering Society General Meeting,2007.
  • 5HU X Y,PENG S L,HWANG W L. EMD Revisited: a New Understanding of the Envelope and Resolving the Mode- mixing Problem in AM-FM Signals [J].IEEE Transactions on Signal Processing,2012,60(3) : 1075-1086.
  • 6HUANG N E. The Empirical Mode Decomposition and the Hilbert spectrum for Nonlinear an Non-stationary Time Series Analysis [J]. Proc R Soc London, 1998,454 : 903-995.
  • 7LI Hui, ZHANG Yu-ping,ZHANG Hai-qi. Hilbert-Huang Transform and Marginal Spectrum for Detection and Diagnosis of Localized Defects in Roller Bearing[J]. Journal of Mechanical Science and Technology,2009,23(2)..291-301.
  • 8http://csegroups, case. edu/bearingdataeenter/.
  • 9Huang. The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis[C]. Proc. R. Soc. A, 1998, 454(6): 903-995.
  • 10李运红,张湧涛,裴未迟.基于小波包-Elman神经网络的电机轴承故障诊断[J].河北理工大学学报(自然科学版),2008,30(4):81-85. 被引量:6

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部