摘要
为了提高电力现场自动化监测的智能程度,设计并实现了一种基于计算机视觉的电力现场自动化监控系统,智能识别算法采用统计平均值的方法获取现场的计算点,利用距离因子的Gauss分布对电力现场的监控区域进行图像融合。通过统计对所有像素点的深度值进行环境建模,利用电力现场的动态特性确定电力现场是否出现故障以及是否发生环境突变。系统终端通过一块单独MCU对同步曝光进行控制,核心算法通过DSP进行处理,给出系统总体设计图,重点分析数据采集模块。仿真实验结果表明,所提方法具有较高的处理速度及准确率,取得较好的监控效果。
In order to improve the intelligent automation monitoring of power field,this paper designs and realizes a kind of automatic monitoring system of power field based on computer vision. The intelligent recognition algorithm acquires the calculation points by accounting the mean value,conducts image fusion of power field monitoring area by using Gauss distribution of the distance factor. Environment modeling is made through the statistical account of depth values of all pixels; dynamic characteristics of the electric field are used to determine the occurrance of power failures and environment mutations. System terminal controls the synchronization exposure through a separate MCU,processed by DSP-based core algorithm to generate the system design layout,with a ficus on data acquisition module analysis.The simulation results show that the proposed method has high processing speed and accuracy,as well as better monitoring effect.
出处
《华东电力》
北大核心
2014年第12期2585-2588,共4页
East China Electric Power
基金
残疾人人机交互面部检测及跟踪技术研究项目(112300410128)
关键词
计算机视觉
电力现场
自动化监控
computer vision
electric power field
automatic monitoring