期刊文献+

基于有限差分Newton-Krylov方法的中子-热工联立求解 被引量:4

Simultaneous Solution of Neutron/Thermal-Hydraulic Coupled System Based on Finite Difference Newton-Krylov Method
原文传递
导出
摘要 利用Newton-Krylov方法联立求解中子-热工耦合问题,Newton迭代具有收敛速度高于传统耦合方法的优势。采用有限差分方法构建Jacobian矩阵,以避免需要Jacobian矩阵的解析表达式。利用有限差分方法直接计算Jacobian矩阵存在计算代价过大的缺点,通过考虑Jacobian矩阵的稀疏结构,减少了Jacobian矩阵的计算代价。通过二维简化中子-热工耦合模型,给出了Newton-Krylov方法与传统耦合方法的计算效率的对比,Newton-Krylov方法的计算效率具有明显优势。 The Newton-Krylov method is utilized to solve the Neutron/Thermal-Hydraulic coupled system in nuclear reactors which convergence rate is higher than the traditional method. Finite difference method is employed to calculate the Jacobian matrix to avoid the analytical expressions of Jacobian matrix. The sparse pattern of the Jacobian matrix is considered to build a higher efficient algorithm compared with the dense Jacobian matrix. The numerical result shows that the advanced Newton-Krylov method is more efficient than the traditional method for the simplified reactor model.
出处 《核动力工程》 EI CAS CSCD 北大核心 2014年第S2期190-193,共4页 Nuclear Power Engineering
关键词 中子-热工耦合 Newton-Krylov方法 稀疏Jacobain矩阵 有限差分近似 Neutronic/Thermal-hydraulic coupled,Newton-Krylov method,Sparse Jacobain matrix,Finite difference approximation
  • 相关文献

参考文献13

  • 1Derek Gaston,Chris Newman,Glen Hansen,Damien Lebrun-Grandié.MOOSE: A parallel computational framework for coupled systems of nonlinear equations[J].Nuclear Engineering and Design.2009(10)
  • 2Kostadin Ivanov,Maria Avramova.Challenges in coupled thermal–hydraulics and neutronics simulations for LWR safety analysis[J].Annals of Nuclear Energy.2007(6)
  • 3Thomas F. Coleman,Burton S. Garbow,Jorge J. More.Software for estimating sparse Jacobian matrices[J].ACM Transactions on Mathematical Software (TOMS).1984(3)
  • 4Mousseau,Vincent A.Accurate solution of the nonlinear partial differential equations from thermal hydraulics[].Nuclear Technology.2007
  • 5Kelley C T.Iterative Methods for Linear and Nonlinear Equations[].Journal of Women s Health.1995
  • 6Park, H.,Knoll, D.A.,Gaston, D.R.,Martineau, R.C.Tightly coupled multiphysics algorithms for pebble bed reactors[].Nuclear Science Journal.2010
  • 7Paul J. Turinsky.ADVANCES IN MULTI-PHYSICS AND HIGH PERFORMANCE COMPUTING IN SUPPORT OF NUCLEAR REACTOR POWER SYSTEMS MODELING AND SIMULATION[].NUCLEAR ENGINEERING AND TECHNOLOGY.2012
  • 8Coleman,T.F.,More,J.J.Estimation of sparse Jacobian matrices and graph coloring problems[].SIAM Journal on Numerical Analysis.1983
  • 9Gan J,Xu Y,Downar T J.A matrix-free newton method for coupled neutronics thermal-hydrau-lics reactor analysis.nuclear mathematical and computational sciences[]..2003
  • 10Kelley C T.Solving nonlinear equations with Newton’’s method[]..2003

同被引文献29

  • 1丘意书,佘顶,范潇,王侃,李泽光,梁金刚.堆用蒙特卡罗程序RMC的全堆计算研究[J].核动力工程,2013,34(S1):1-4. 被引量:10
  • 2Gan J, Xu Y, Downar T J. A matrix-free newton method forcoupled neutronics Thermal-Hydraulics reactor analysis [C]. Nuclear Mathematical and Computaional Sciences, Gatlinburg, Tennessee, 2003.
  • 3Park H K, Knoll D A. Tightly coupled multi-physics algorithms for pebble bed reactor [J]. Nuclear science and engineering, 2010, 166:118-133.
  • 4Ward A M. A newton-krylov solution to the coupled neutronics-porous medium equations[D]. PhD, Univer- sity of Michigan, 2013.
  • 5Waston J K. Implicit time-integration method for simultaneous solution of a coupled nonlinear system[D]. PhD, Pennsylvania State University, 2010.
  • 6Kastanya D F. Implement of a newton-krylov iterative method to address strong Non-Linear feedback effects in FORMOSA-B BWR core simulator[D]. PhD, North Carolina State University, 2002.
  • 7Brown P N, Saad Y. Hybrid krylov methods for nonlinear systems of equations[J]. SIAM Journal on Science and Statistics Computing, 1990, 11:450-481.
  • 8Knoll D A, Keyes D E. Jacobian-free Newton-Krylov methods: a survey of approaches and applications [J]. Journal of Computational Physics, 2004, 193(2): 357- 397.
  • 9Schmidt R C, Belcourt K. Foundational development of an advanced nuclear reactor integrated safety code [R]. Technology report, Sandia National laboratory, 2011.
  • 10Kelley C T. Iterative methods for linearand nonlinear equations [Z], 1995.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部