期刊文献+

基于指数变换的对角隐式龙格库塔法求解中子点堆动力学方程

Application of Diagonally Implicit Runge Kutta with Exponential Transformation on Point Kinetic Equations
原文传递
导出
摘要 点堆动力学对于反应堆安全运行有着重要作用,但点堆动力学方程是刚性的,通常使得数值求解所采用的步长很小。本文研究了基于指数变换的对角隐式龙格库塔(DIRK)方法用来求解点堆动力学方程。基于指数变换的DIRK保留了DIRK方法适合求解刚性方程的特点,同时在反应性引入较大的情况下,它比对角隐式库塔方法表现更好。若干算例,如反应性阶跃、线性或者正弦变化等,表明基于指数变换的DIRK方法具有很高的计算精度。 The point kinetics is very important to the safety of the reactor operation.However,these equations are stiff,with very small time step for solution.The diagonally implicit Runge Kutta(DIRK)with exponential transformation is studied for point kinetics.It keeps the advantage of diagonally implicit Runge Kutta method which is suitable for stiff equations and owns the better performance than the diagonally implicit Runge Kutta method when the positive reactivity is inserted.Several cases,such as step,ramp,and sinusoidal reactivity insertion are used to show that this method owns high accuracy.
作者 蔡云 张知竹 李庆 王帅 Cai Yun;Zhang Zhizhu;Li Qing;Wang Shuai(Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China,Chengdu,610213,China)
出处 《核动力工程》 EI CAS CSCD 北大核心 2018年第A01期24-27,共4页 Nuclear Power Engineering
关键词 点堆动力学 指数变换 对角隐式龙格库塔(DIRK) 刚性 Point Kinetics Exponential transformation Diagonally Implicit Runge Kutta(DIRK) Stiffness
  • 相关文献

参考文献1

二级参考文献5

  • 1Stacey W M.Nuclear Reactor Physics[M].New York:John Wiley& Sons,2001,139 ~ 190.
  • 2Ott K O,Neuhold R J.Introductory Nuclear Reactor Dynamics[M].La Grange Park,Illinois:American Nuclear Society,1985,158 ~ 179.
  • 3Gear C W.Numerical Initial Value Problems in Ordi nary Differential Equations[M].Englewood Cliffs,New Jersey:Prentice-Hall,1971,7 ~ 23.
  • 4Stoer J,Bulirsch R.Introduction to Numerical Analy sis[M].3rd Edition.New York:Springer,2002,486 ~492.
  • 5The Mathworks Inc.Using Matlab[M].Version 6.Natick,Massachusetts:The Mathworks Inc.2000.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部