期刊文献+

GPU加速的中子输运稳态格子Boltzmann方法

Steady-State Lattice Boltzmann Method for Neutron Transport with GPU Acceleration
原文传递
导出
摘要 采用具有强局部特性的格子Boltzmann方法(LBM)对多维介质中的中子输运过程进行模拟。同时,为了提高LBM计算的速度,应用了图形处理器(GPU)加速技术对LBM计算过程进行了并行加速。典型中子输运问题的数值模拟结果表明,LBM能准确的模拟中子输运问题,同时GPU加速技术能有效的提高LBM的计算效率。二者的结合能够实现中子输运问题的高效准确计算。 The multi-dimensional neutron transport process is simulated by using the lattice Boltzmann method(LBM) with strong localization. Meanwhile, to improve the computational speed of LBM, the Graphics Processing Unit(GPU) acceleration is applied to speed up the LBM calculation in parallel. The numerical solutions for typical neutron transport cases show that the LBM can simulate the neutron transport problem accurately and the GPU acceleration can efficiently improve the computational speed of the LBM. The combination of these two techniques can realize the efficient and accurate neutron transport calculation.
作者 马宇 王亚辉 彭星杰 夏榜样 Ma Yu;Wang Yahui;Peng Xingjie;Xia Bangyang(Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, China;School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China;Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China,Chengdu, 610213, China)
出处 《核动力工程》 EI CAS CSCD 北大核心 2018年第S2期6-9,共4页 Nuclear Power Engineering
基金 国家自然科学基金资助项目(11875330)
关键词 中子输运 格子BOLTZMANN方法 GPU并行计算 加速比 Neutron transport Lattice Boltzmann method GPU acceleration Speedup ratio
  • 相关文献

参考文献2

二级参考文献33

  • 1LI Da WANG Chuanshan LUO Wenyun WEI Zhongyuan.Energy loss caused by shielding effect of steel cage outside source tube[J].Nuclear Science and Techniques,2007,18(2):86-87. 被引量:1
  • 2McNamara G R, Zanetti G. Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett, 1988, 61: 2332-2335.
  • 3Qian Y H, d’Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhys Lett, 1992, 17: 479-484.
  • 4Succi S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. New York: Oxford University Press, 2001.
  • 5He X Y, Luo L S. A priori derivation of the lattice Boltzmann equation. Phys Rev E, 1997, 55: R6333-R6336.
  • 6He X Y, Luo L S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys Rev E, 1997, 56: 6811-6817.
  • 7Hou S L, Chen S Y, Doolen G D, et al. Simulation of cavity flow by the lattice Boltzmann method. J Comput Phys, 1995, 118: 329-347.
  • 8Hou S L, Sterling J, Chen S Y, et al. A lattice Boltzmann subgrid model for high Reynolds number flows. arXiv:comp-gas/9401004v1.
  • 9Yu H D, Girimaji S S, Luo L S. DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method. J Comput Phys, 2005, 209: 599-616.
  • 10Fernandino M, Beronov K, Ytrehus T. Large eddy simulation of turbulent open duct flow using a lattice Boltzmann approach. Math Comput Simulat, 2009, 79: 1520-1526.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部