期刊文献+

一种改进的深度神经网络的花卉图像分类 被引量:7

An Improved Depth Convolutional Neural Network for Flower Image Classification
原文传递
导出
摘要 花卉图像类内差异性大和类间相似性高使得花卉图像分类较难.传统花卉分类方法和普通卷积神经网络很难完整地表达花卉图像的特征,故而分类效果不理想.为提高花卉分类准确率,提出改进的InceptionV3网络用于花卉图片的分类.采用迁移学习的方法,将在大规模数据集上训练的InceptionV3网络用于花卉图像数据集的分类,对其中的激活函数进行改进.在通用Oxford flower-102数据集上的实验表明:该模型在花类图像分类任务中比传统方法和普通卷积神经网络分类准确率高,且比未改进的卷积神经网络准确率高,迁移过程准确率达到81.32%,微调过程准确率达到92.85%. The difference within the same flower class and the high similarity among the different flower images make the classification of flower images more difficult.Traditional flower classification method and ordinary convolution neural network are difficult to express the characteristics of flower images,so the classification effect is not ideal.This article proposed an improved InceptionV3 network to classify flower pictures.The method of transfer learning was adopted.InceptionV3 network trained on large-scale datasets was used for the classification of flower image dataset,and the activation function was improved.Experiments on the Universal Oxford flower-102 dataset show that the proposed model has more advantages than traditional methods and general convolutional neural networks in the classification of flower images,and has a higher recognition rate than the unmodified convolutional neural network.The transfer-learning accuracy rate reaches 81.32%,and fine-tuning process accuracy rate reaches 92.85%.
作者 吴迪 侯凌燕 刘秀磊 李红臣 WU Di;HOU Lingyan;LIU Xiulei;LI Hongchen(Computer School,Beijing Information Science&Technology University,Beijing100101,China;Communication and Information Center of the State Administration of Work Safety,Beijing100013,China)
出处 《河南大学学报(自然科学版)》 CAS 2019年第2期192-203,共12页 Journal of Henan University:Natural Science
基金 国家重点研发计划课题(2016YFC0801407) 国家自然科学基金(61601039) 北京市教育委员会科技计划面上项目(KM201811232018) 网络与交换技术国家重点实验室(北京邮电大学)开放课题资助项目(SKLNST-2016-2-08) 网络文化与数字传播北京市重点实验室开放课题资助(ICDDXN006)
关键词 迁移学习 InceptionV3网络结构 深度神经网络 Tanh-ReLU激活函数 数据增强 图像分类 transfer learning InceptionV3 network deep neural network Tanh-ReLU activation function data enhancement image classification
  • 相关文献

参考文献5

二级参考文献21

共引文献30

同被引文献55

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部