期刊文献+

飞翼无人机非线性控制设计方法 被引量:8

Flying wing UAV control design study of nonlinear method and flight validation
下载PDF
导出
摘要 为实现飞翼无人机的机动飞行,以带有流体矢量方向舵的飞翼无人机为设计对象,采用非线性设计方法设计了控制器,并进行飞行验证.针对飞翼无人机的机动飞行控制存在各种耦合和扰动的特点,设计内环线性化解耦以消除已知不利的耦合项,外环反步跟踪方法进行航迹跟踪的控制律结构,证明了该控制结构的稳定性.同传统反步控制方法相比,该控制器增加了内环解耦结构,并在控制结构中保留气动阻尼项,使得线性化后的系统为弱非线性系统.该结构不仅可以降低外环控制器设计的保守性,而且便于工程实现.仿真和飞行试验表明,该控制方案是有效的. For realization of the flying wing UAV maneuvering flight,a fluid vector rudder flying wing UAV as study object,the controller is designed by using the nonlinear design method and carried out flight validation. As the existence of various coupling and disturbance in the maneuvering flight control of flying wing UAV,a novel control scheme that the inner loop use linearization decoupling methods to eliminate the known negative coupling and the outer loop use backstepping methods for trajectory tracking control is used. Compared with the traditional backstepping control method, the controller increases the inner loop decoupling structure, and retains the aerodynamic damping term in the control structure,which makes the linearized system as a weak nonlinear system.The proposed contro structure not only can reduce the conservatism of the outer loop controller design,but also is convenient in practical engineering realization. Finally,Simulation and flight results show that the proposed control scheme is effective.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2017年第9期151-158,共8页 Journal of Harbin Institute of Technology
基金 中国航空基金(20160152001) 中央高校基金科研业务专项基金(N52015038)
关键词 机动飞行 控制结构 输入线性化 气动补偿 反步控制 maneuver flight control structure input/output linearization aerodynamics compensation backstepping control
  • 相关文献

参考文献5

二级参考文献92

  • 1ALCORN C W, CROOM M A, FRANCIS M S, et al. The X-31 air- craft: advances in aircraft agility and performance [J]. Progress inAerospace Sciences, 1996, 32(4): 377 - 413.
  • 2R·C·比施根斯(俄).超声速飞机空气动力学和飞行力学[M].上海:上海交通大学出版社,2009.
  • 3SHIN Y, ANTHONY J C, MATTHEW J. Adaptive control of ad- vanced fighter aircraft in nonlinear flight regimes [J]. Journal of Guid- ance, Control, and Dynamics, 2008, 31(5): 1464- 1477.
  • 4WILSON E A, DAN A, PINHAS Z. Geometric evaluation of axisym- metric thrust-vectoring nozzles for aerodynamic performance predic- tions [J]. Journal of Propulsion and Power, 2002, 18(3): 712 - 716.
  • 5BARHAM R W. Thrust vector aided maneuvering of the YF-22 ad- vanced tactical fighter prototype [C]//Agard Conference Proceedings Agard CP. Paimdale: NASA, 1994:1 - 13.
  • 6GOMAN M, KHRABROV A. State-space representation of aerody- namic characteristics of an aircraft at high angles of attack [J]. Jour- nal of Aircrafi, 1994, 31(5): 1109 - 1115.
  • 7PANCHAL B, JAYWANT P K, TALOLE S E. Robust predictive con- trol of a class of nonlinear systems [J]. Journal of Guidance, Control, and Dynamics, 2014, 37(5): 1437- 1445.
  • 8SIEBERLING S, CHU Q P, MULDER J A. Robust flight control us- ing incremental nonlinear dynamic inversion and angular acceleration prediction [J]. Journal of Guidance, Control, and Dynamics, 2010, 33(6): 1732- 1742.
  • 9ISHIHARA A, BEN M S, NGUYEN N, et al. Time delay margin estimation for adaptive outer-loop longitudinal aircraft control [C] //AIAA Information Technology @ Aerospace Conference. Atlanta: AIAA, 2010.
  • 10KOSCHORKE J. Advanced flight control design and evaluation [D]. Stevinweg: Delft University of Technology, 2012.

共引文献33

同被引文献55

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部