摘要
为优化得到考虑地球扁率J2项摄动影响的小推力燃料最优转移轨道,提出了一种3次同伦方法.构造较简单的采用"线性引力",且不考虑J2项摄动的大推力能量最优转移轨道作为同伦初始问题.引入3个同伦参数,分别对动力学模型、推力大小和性能指标进行同伦,根据极小值原理推导得到同伦过程中的最优控制律,并通过跟踪同伦参数的连续变化求解一系列的同伦迭代子问题,分别得到J2摄动模型下的大推力能量最优转移轨道和小推力能量最优转移轨道,并最终优化得到小推力燃料最优转移轨道.以航天器与位于太阳同步轨道的碎片的交会任务为算例进行数值仿真,验证所提出的3次同伦方法在求解J2项摄动影响下的小推力燃料最优转移轨道优化问题中的有效性.结果表明,利用打靶法容易对同伦初始问题进行求解,在同伦过程中能连续稳定地跟踪同伦参数,进而得到所需的燃料最优小推力转移轨道,利用该方法能有效地解决J2项摄动导致的非线性强、推力小、转移圈数多等原因所导致的一般数值优化算法不易收敛的难题.
A multiple homotopy method is proposed to optimize the very low thrust fuel-optimal transfer trajectory under the effects of J2 perturbation.A simple problem of high thrust,energy-optimal transfers in the linear gravity without J2 perturbation is constructed as the homotopy initial problem.Three homotopic parameters are embedded in the kinetic equations,thrust magnitude and performance index,respectively,and the optimal control laws in the homotopy process are deduced according to the minimum principle.By solving the subproblems with iterative homotopic parameters,the high thrust energy-optimal transfers,low thrust energy-optimal transfers and fuel-optimal transfers are solved in turn.A numerical example about rendezvous mission of satellite and debris on sunsynchronous orbits is given to substantiate the effectiveness of the method in fuel-optimal low thrust trajectory design in the gravity with J2 perturbation.Using the proposed method,the difficulties of the highly nonlinearity of the dynamic system caused by J2 perturbation,the fuel optimal problem's discontinuous structure of Bang-Bang control and many revolution transfers can be solved.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2017年第10期15-21,共7页
Journal of Harbin Institute of Technology
基金
国家自然科学基金(11672234)