摘要
为了消除电动汽车的无序充电和风力发电的随机性对电力系统带来的负面影响,利用相关数据得到了电动汽车充电概率,将风电的不确定性表示为一个具有零均值、呈正态分布的预测误差,由此建立了考虑电动汽车无序充电的风-水-火联合的多目标调度模型。采用多目标布谷鸟搜索算法对该联合电力系统调度模型进行求解,并用算例分析了三种情形下水电站的调峰能力。分析结果表明,风-水-火联合调度模型和调度策略能够提高系统接纳风电能力,满足电动汽车无序充电,降低火电机组出力的峰谷差,为解决大规模风电入网和大量电动汽车充电提供可借鉴的策略。
In order to eliminate the negative impact of the disorderly charging and randomness of wind power generation on electric power system,the charging probability of electric vehicles is obtained by using the relevant data,and the uncertainty of wind power is expressed as a prediction error with zero mean and normal distribution.A multi-objective scheduling model of wind-water-fire combination considering the disorderly charging of electric vehicles is established.The multi-objective cuckoo search algorithm is adopted to solve the dispatching model of the combined power system,and the peak-shaving capacity of hydropower station in three situations is analyzed by an example.The analysis results show that the proposed wind-water-fire joint dispatching model and dispatching strategy can improve the system’s wind power capacity,meet the disorderly charging of electric vehicles,reduce the peak-valley difference of thermal power unit output,and provide a reference strategy for solving large-scale wind power grid entry and large-scale charging of electric vehicles.
作者
梁作放
尹茗晓
肖雨涵
LIANG Zuofang;YIN Mingxiao;XIAO Yuhan(State Grid Shandong Electric Power Co.,Ltd.Heze Power Supply Company,Heze 274000,China;State Grid Shandong Electric Power Co.,Ltd.Maintenance Company,Jinan 250000,China;School of Economics and Management,Shanghai University of Electric Power,Shanghai 200090,China)
出处
《黑龙江电力》
CAS
2019年第3期194-200,共7页
Heilongjiang Electric Power
基金
上海市高校人文科学重点研究基地建设项目(WKJD15004)
关键词
电动汽车
无序充电
风-水-火联合系统
多目标调度
布谷鸟搜索算法
electric vehicle
disordered charging
wind-water-fire combined system
multi-objective scheduling
cuckoo search algorithm