期刊文献+

圆柱状金属泡沫多孔前置体的气动热效应分析

Analysis of aero-heating effect inside frontal cylindrical metal foam
下载PDF
导出
摘要 以超声速气流冲击轴线与来流方向相一致的带有金属泡沫多孔前置体的实体圆柱为研究对象,采用连续尺度单区域法数值模拟泡沫多孔前置体内部的流场及气动热效应。多孔域阻力特性基于分布阻力法加入,选用局部非热平衡模型,考虑流体相与固体相的传热温差,并通过Rosseland扩散模型加入固体相的辐射热效应。研究发现,在模拟气流工况下前置有一定长度的柱状泡沫多孔材料可显著降低模型激波阻力和前缘气动热效应,此外相对于气动压缩效应对温度场的影响黏性耗散效应较小。 Supersonic flow around streamwise-aligned solid cylinder with cylindrical open-cell metal foam insert front is investigated.The fluid field and aero-heating effect inside frontal foam porous region is numerically simulated by single domain method at continuum-scale.The drag characteristic of porous region is added by distributed resistance method.The heat transfer temperature difference between solid and fluid phase is taken into account by employing local thermal non-equilibrium model and the radiation heat transfer of solid phase is calculated using Rosseland approximation.It is found that the installation of certain length of cylindrical open-cell foam in front of solid cylinder can reduce the wave drag and frontal aero-heating effect of the model considerably under simulating airflow condition.Compared with aerodynamic compression effect,the influence of viscous dissipation effect on temperature field is small.
出处 《化工学报》 EI CAS CSCD 北大核心 2017年第S1期260-265,共6页 CIESC Journal
基金 国家自然科学基金项目(51536001)~~
关键词 泡沫多孔材料 超声速绕流 流场 气动热效应 激波阻力 模型 数值分析 open-cell foam supersonic flow around fluid field aero-heating effect wave drag model numerical analysis
  • 相关文献

参考文献2

二级参考文献27

  • 1Guo Yanhu(郭延虎).[D].Beijing:Tsinghua University,1996.
  • 2张涵信.Non-oscillatory and Non-free-parameter Dissipation Difference Scheme[J].空气动力学学报,1988,6(2):143-165.
  • 3Anderson J D.计算流体力学基础及其应用[M].北京:机械工业出版社,2007:1-83.
  • 4Sha W T, Yang C I, Kao T T, et al. Multidimensional Numerical Modeling of Heat Exchangers. J Heat Transfer,1982, 104:417-425.
  • 5Karayannis N, Markatos N C G. Mathematical Modeling of Heat Exchangers. In: Berryman R J, ed. Proceedings of the Tenth International Heat Transfer Conference. Brighton, UK: The Industrial Sessions Papers, 1984. 13-18.
  • 6Prithiviraj M, Andrews M J. Three Dimensional Numerical Simulation of Shell-and-Tube Heat Exchangers ·Ⅰ· Foundation and Fluid Mechanics. Numerical Heat Transfer Part A -Applications, 1998, 33(8): 799-816.
  • 7Prithiviraj M, Andrews M J. Three-dimensional Numerical Simulation of Shell-and-Tube Heat Exchangers ·Ⅱ· Heat Transfer. Numerical Heat Transfer Part A Applications,1998, 33(8): 817-828.
  • 8Marcos H J P, Marcelo J S. On the Definition of Turbulent Kinetic Energy for Flow in Porous Media. Int Comm Heat Mass Transfer, 2000, 27(2): 211-220.
  • 9Nield D A, Bejan A. Convection in Porous Media. New York:Springer-Velag Inc, 1999.
  • 10Seguin D, MontiUet A, Comiti J. Experimental Characterization of Flow Regimes in Various Porous Media ·Ⅰ· Limit of Laminar Flow Regime. Chemical Engineering Science, 1998, 53(21):3751-3761.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部