摘要
提出基于LDIW-PSO算法优化的BP神经网络温度补偿方法。优化的BP神经网络使用LDIWPSO算法调整其权值和阈值,使之收敛速度快,不会产生局部极小值问题。通过实验和仿真结果可以看出:该算法对温度补偿精度高、误差小,效果明显。
A LDIW-PSO algorithm-based BP neural network temperature compensation method was proposed.The optimized BP neural network employs LDIW-PSO algorithm to adjust its weights and thresholds,and the fast convergence speed incurs no local minima problem. Both experimental and simulation results show that this algorithm has small error,high precision and a significant compensation effect.
出处
《化工自动化及仪表》
CAS
2014年第9期1031-1034,共4页
Control and Instruments in Chemical Industry