期刊文献+

基于主成分分析和PLS算法的弧线管污垢特性研究 被引量:2

Study on Fouling Characteristics of Arc Line Tube Based on PCA and PLS
下载PDF
导出
摘要 搭建了弧线管污垢特性实验平台,用于测量相应的污垢参数。基于主成分分析理论和偏最小二乘算法(PLS)建立了弧线管的污垢特性方程。该方程以弧线管的出入口温度、壁温及流速等参数作为模型的自变量,以污垢热阻值作为因变量。利用交叉验证原则以提取最佳主成分个数。通过对预测方程的检验,结果表明:所建5自变量预测方程能较好地实现对弧线管污垢特性的预测,而且明显优于6自变量模型。 The fouling experimental platform for arc line tube was built to measure fouling parameters. Based on both principal component analysis( PCA) and partial least squares( PLS) algorithm,the fouling equation was built which has arc line tube's inlet and outlet temperature,wall temperature and flow rate taken as the model's independent variables,and the fouling resistance taken as the dependent variable,as well as the cross validation principle used to extract the best number of principal components. Testing the prediction equation shows that 5-variable equation outperforms 6-independent variable model in predicting arc line tube 's fouling characteristics.
机构地区 东北电力大学
出处 《化工自动化及仪表》 CAS 2015年第6期656-660,共5页 Control and Instruments in Chemical Industry
基金 国家自然科学基金资助项目(51176028) 吉林市科技发展计划资助项目(201464061) 东北电力大学"十二五"科研提升工程资助计划项目
关键词 弧线管 污垢特性 主成分分析 偏最小二乘算法 arc line tube,fouling characteristics,PCA,PLS
  • 相关文献

参考文献9

二级参考文献49

共引文献83

同被引文献22

  • 1傅沛杰.带麻花插件的麻花管换热器在轧钢加热炉上的应用[J].天津冶金,1994(2):26-28. 被引量:1
  • 2徐继刚,冯新泸,管亮,王帅,杨岚.复合PLS模型在近红外光谱分析煤炭中的应用[J].化工自动化及仪表,2012,39(2):178-181. 被引量:2
  • 3张杏祥,魏国红,桑芝富.螺旋扭曲扁管换热器传热与流阻性能试验研究[J].化学工程,2007,35(2):17-20. 被引量:25
  • 4关跃波,尹涌澜,孙斌,周云龙,刘文静.应用最小二乘支持向量机预测煤的发热量[J].东北电力大学学报,2006,26(6):66-69. 被引量:11
  • 5Peter H. Given,Diane Weldon,Jerome H. Zoeller.Calculation of calorific values of coals from ultimate analyses: theoretical basis and geochemical implications. Fuel . 1986
  • 6Extraction of soluble major and trace elements from fly ash in open and closed leaching systems(J)Fuel . 2001 (6)
  • 7C. Telmo,J. Lousada,N. Moreira.??Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood(J)Bioresource Technology . 2010 (11)
  • 8Sh. Mesroghli,E. Jorjani,S. Chehreh Chelgani.??Estimation of gross calorific value based on coal analysis using regression and artificial neural networks(J)International Journal of Coal Geology . 2009 (1)
  • 9S. Hassanzadeh,F. Hosseinibalam,M. Omidvari.??Statistical methods and regression analysis of stratospheric ozone and meteorological variables in Isfahan(J)Physica A: Statistical Mechanics and its Applications . 2008 (10)
  • 10Alessandro Franco,Ana R. Diaz.??The future challenges for “clean coal technologies”: Joining efficiency increase and pollutant emission control(J)Energy . 2008 (3)

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部