期刊文献+

整流电絮凝技术对缺氧地下水中As(Ⅲ)的原位修复 被引量:1

Rectified-alternating-current electrocoagulation for As(Ⅲ) remediation in the anoxic groundwater
下载PDF
导出
摘要 地下水中砷污染的原位修复治理对人类社会的可持续发展具有重要意义.本文研发了一种新型整流电絮凝反应体系,可实现对缺氧地下水As(Ⅲ)的原位修复.实验结果表明,最优操作条件为:电流密度为4.4 m A·cm^(-2),铁棒和MMO的阳极工作时间比值(TFe-anode/TMMO-anode)为1∶2,反应周期为24 s.在最优条件下,含有500μg·L^(-1)As(Ⅲ)的模拟地下水经过30 min电絮凝处理后砷的固定脱除效率达92%,总能耗为0.11 kW·hm^(-3).此外,水体中的HCO_3^-和PO_4^(3-)等无机阴离子对砷的固定具有抑制作用.在该反应体系内,电解生成的Fe(Ⅱ)与O2之间的氧化反应生成具有强氧化性的Fe(Ⅳ)可有效将As(Ⅲ)氧化成毒性较小且更易于固定脱除的As(Ⅴ),进而显著促进了砷在Fe(Ⅲ)絮凝沉淀作用下的固定脱除. In situ remediation of arsenic in anoxic groundwater is significant for the sustainable development of humankind. In this study,a wave rectified alternating current electrocoagulation process was developed for the oxidative sequestration of As( Ⅲ) in the simulated anoxic groundwater. The optimal current density,TFe-anode/TMMO-anoderatio and reaction period for As( Ⅲ)sequestration were 4. 4 m A·cm-2,1 ∶ 2 and 24 s,respectively. Under the optimal conditions,approximately 92% of 500 μg·L-1 As( Ⅲ) was removed after 30 min reaction at pH 8 with the energy consumption of 0.11 kW·hm-3. In addition,the presence of HCO3- and PO43- deteriorated the efficiency of As( tot) sequestration. In this process,the oxidation of As( Ⅲ) to As( Ⅴ) was induced by the intermediate oxidant,i. e.,Fe( Ⅳ),produced in the process of O2 reacting with Fe( Ⅱ),followed by the sequestration of As( Ⅴ) by the freshly generated amorphous Fe( Ⅲ)( oxyhydr)oxides.
作者 信帅帅 孙彤 江波 XIN Shuaishuai;SUN Tong;JIANG Bo(State Key Laboratory of Petroleum Pollution Control,CNPC Research Institute of Safety and Environmental Technology,Beijing,102206,China;School of Environmental and Municipal Engineering,Qingdao University of Technology,Qingdao,266033,China)
出处 《环境化学》 CAS CSCD 北大核心 2019年第1期195-201,共7页 Environmental Chemistry
基金 国家自然科学基金(51608284)资助~~
关键词 地下水 As(Ⅲ)氧化 整流电絮凝 固定脱除 原位修复 groundwater As(Ⅲ) oxidation rectified alternating current electrocoagulation immobilization in-situ remediation
  • 相关文献

参考文献1

二级参考文献31

  • 1陈敬军,蒋柏泉,王伟.除砷技术现状与进展[J].江西化工,2004,20(2):1-4. 被引量:35
  • 2Jain A, Raven K P, Loeppert R H. 1999. Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH- release stoichiometry [ J ]. Environ Sci Technol, 33 ( 8 ) : 1179-1184
  • 3Jain C K, Ali I. 2000. Arsenic: occurrence, toxicity and speciation techniques [ J]. Water Research, 34 : 4304-4312
  • 4Jia Y F, Xu L Y, Wang X, et al. 2007. Infrared spectroscopic and X- ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite [ J ]. Geochimica et Cosmochimica Acta, 71 : 1643-1654
  • 5Jia Y F, Xu L Y, Fang Z, et al. 2006. Observation of surface precipitation of arsenate on ferrihydrite [ J]. Environ Sci Technol, 40 (10) : 3248 -3253
  • 6Kitahama K, Kiriyama R, Baba Y. 1975. Refinement of the crystal structure of scorodite [ J]. Acta Crystall B, 31:322-324
  • 7Krause E, Ettel V A. 1988. The solubility of scorodite, FeAsO4 2H2O: New data and further discussion [J]. American Mineralogist, 73:850-854
  • 8Ladeira A C Q, Ciminelli V S T. 2004. Adsorption and desorptlon of arsenic on an oxisol and its constituents [ J]. Water Research, 38: 2087-2094
  • 9Mohan D, Pittman Jr C U. 2007. Arsenic removal from water/waste water using adsorbents-a critical review [ J ]. Hazard Mater, 142 : 1-53
  • 10Mondal P, Majumder C B, Mohanty. 2006. Laboratory based approaches for arsenic remediation from contaminated water : recent developments [J]. Hazard Mater B, 137:464-479

共引文献34

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部