期刊文献+

废水中硝氮和COD浓度对AD-MFC脱氮产电性能的影响 被引量:8

Influence of nitrate and COD concentrations on nitrogen removal and power production performance of AD-MFC
原文传递
导出
摘要 为探明废水中硝氮和COD浓度对阳极反硝化微生物燃料电池(AD-MFC)工作性能的影响,在批式操作下逐步提高进水浓度考察了AD-MFC反硝化速率和产电性能的变化,并以多个动力学模型对此过程进行拟合。结果表明,废水浓度可通过污染物降解速率来影响产电性能,硝氮浓度从50 mg/L升高至2 000 mg/L时,反硝化速率和输出电压逐渐达到最大值((1.26±0.01)kg N/(m3·d)和(1 016.75±4.74)mV),但硝氮浓度继续提高会抑制反硝化速率和产电性能。Han-Levenspiel模型可较好地表征AD-MFC的污染物降解和产电动力学行为,以该模型为基础建立了污染物去除速率、输出电压、功率密度与进水浓度之间的关系,反硝化在NO-3-N高于4 000 mg/L时才能被完全抑制。AD-MFC适用于处理不同浓度的硝酸盐废水,并对高浓度硝酸盐废水具有较好的耐受性。 To investigate the influence of nitrate and COD concentrations on the nitrogen removal and power production performance of AD-MFC,variations of denitrification rate and electricity production were monitored by stepwisely elevating the influent wastewater concentration and the experimental data were fitted with several kinetic models. Power generation was closely related to denitrification rate. Both the denitrification rate and electricity production capacity were enhanced as the initial NO-3-N concentration increased from 50 mg /L to 2 000 mg /L,with a maximum nitrate removal rate of( 1. 26 ± 0. 01) kg N /( m3·d) and maximum voltage output of( 1 016.75 ±4.74) mV. Further increase of influent concentration led to decrease of denitrification rate and electricity production capacity. The kinetic behavior of the AD-MFC could be described well with Han-Levenspiel model,through which the relationships among the substrates removal,power generation and wastewater concentrations were established. Denitrification would be completely inhibited at a NO-3-N concentration more than 4 000 mg /L,which suggested that AD-MFC was suitable to treat various concentrations of nitrate wastewater and tolerant to high nitrate concentration wastewater.
出处 《环境工程学报》 CAS CSCD 北大核心 2014年第10期4508-4514,共7页 Chinese Journal of Environmental Engineering
基金 国家自然科学基金资助项目(31070110) 高等学校博士学科点专项科研基金资助项目(20110101110078) 浙江省自然科学基金重点项目(Z5110094)
关键词 微生物燃料电池 反硝化产电 反应动力学 抑制浓度 microbial fuel cell electricity generation from denitrification reaction kinetics inhibition concentrations
  • 相关文献

参考文献7

  • 1张吉强,郑平,张萌,厉巍,陈慧,蔡琛,谢作甫.AD-MFC中甲醇与硝酸盐的偶合过程与作用机制[J].化工学报,2013,64(9):3404-3411. 被引量:3
  • 2赵正权,徐冬,张浩,孙正滨,杨慧慧,周远.中国污水处理电耗分析和节能途径[J].科技导报,2010,28(22):43-47. 被引量:19
  • 3Chong-Jian Tang,Ping Zheng,Ting-Ting Chen,Ji-Qiang Zhang,Qaisar Mahmood,Shuang Ding,Xiao-Guang Chen,Jian-Wei Chen,Da-Tian Wu.Enhanced nitrogen removal from pharmaceutical wastewater using SBA-ANAMMOX process[J].Water Research.2010(1)
  • 4Sung T. Oh,Jung Rae Kim,Giuliano C. Premier,Tae Ho Lee,Changwon Kim,William T. Sloan.Sustainable wastewater treatment: How might microbial fuel cells contribute[J].Biotechnology Advances.2010(6)
  • 5Deepak Pant,Gilbert Van Bogaert,Ludo Diels,Karolien Vanbroekhoven.A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[J].Bioresource Technology.2009(6)
  • 6Jeffrey M. Morris,Paul H. Fallgren,Song Jin.Enhanced denitrification through microbial and steel fuel-cell generated electron transport[J].Chemical Engineering Journal.2009(1)
  • 7Jinyou Shen,Rui He,Weiqing Han,Xiuyun Sun,Jiansheng Li,Lianjun Wang.Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR)[J].Journal of Hazardous Materials.2009(2)

二级参考文献17

共引文献20

同被引文献90

  • 1贾璐维,赵剑强,胡博,赵慧敏,黄楠.MFC强化同步短程硝化反硝化工艺的启动[J].环境工程学报,2015,9(4):1831-1836. 被引量:3
  • 2许鸿雁,赵剑强,胡博,赵慧敏.铁氰化钾对双室微生物燃料电池曝气阴极性能的改善[J].环境工程学报,2015,9(6):2847-2852. 被引量:4
  • 3梁鹏,范明志,曹效鑫,黄霞,王诚.微生物燃料电池表观内阻的构成和测量[J].环境科学,2007,28(8):1894-1898. 被引量:118
  • 4LOGANBE, HAMELERSB, ROZENDALR, etal. Microbial fuel cells methodology and technology [J]. Environmental Science Technology, 2006, 40 (17): 5181-5192.
  • 5LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber mierobialfuelcell[J]. Environmental Science & Technology, 2004, 38 (7): 2281-2285.
  • 6LIU X W, LI W W, YU H Q. Cathodic catalysts in bioelectrochemieal systems for energy recovery from wastewater[J]. Chemical Society Reviews, 2014, 43 (22) : 7718-7745.
  • 7ZHANG F, HE Z. Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell[J]. Process Biochemistry, 2012, 47 (22): 2146-2151.
  • 8PARK D H, LAIVENIEKS M, GUETTLERMV, et al. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J]. Applied and EnviromnentalMierobiology, 1999, 65 (7): 2912-2917.
  • 9HOLMES D E, BOND D R, O'NEIL R A, et al. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments[J]. Microbial Ecology, 2004, 48 (2): 178-190.
  • 10PUIG S, COMA M, DESLOOVER J, et al. Autotrophic denitrification in microbial fuel cells treating low ionic strength waters[J]. Environmental Science & Technology, 2012, 46 (4): 2309-2315.

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部