期刊文献+

One-step synthesis of N-doped metal/biochar composite using NH_3-ambiance pyrolysis for efficient degradation and mineralization of Methylene Blue 被引量:8

One-step synthesis of N-doped metal/biochar composite using NH_3-ambiance pyrolysis for efficient degradation and mineralization of Methylene Blue
原文传递
导出
摘要 A series of new biochar-supported composite based on the combination of biochar and metallic nanoparticles(NPs)were produced through single-step pyrolysis of FeCl_3–Ti(OBu)_4 laden agar biomass under NH_3 environment.The physiochemical properties of composites were characterized thoroughly.It has found that heating temperature and N-doping through NH_3-ambiance pyrolysis significantly influence the visible-light sensitivity and bandgap energy of composites.The catalytic activities of composites were measured by degradation of Methylene Blue(MB)in the presence or absence of H_2O_2 and visible-light irradiation.Our best catalyst(N–TiO_2–Fe_3O_4-biochar)exhibits rapid and high MB removal competency(99.99%)via synergism of adsorption,photodegradation,and Fenton-like reaction.Continuous production of O_2U^-and UOH radicles performs MB degradation and mineralization,confirmed by scavenging experiments and degradation product analysis.The local trap state Ti^(3+),Fe_3O_4,and N-carbon of the catalyst acted as active sites.It has suggested that the Ti^(3+)and N-doped dense carbon layer improve charge separation and shuttle that prolonged photo-Fenton like reaction.Moreover,the catalyst is highly stable,collectible,and recyclable up to 5 cycles with high MB degradation efficiency.This work provides a new insight into the synthesis of highly visible-light sensitized biocharsupported photocatalyst through NH_3-ambiance pyrolysis of NPs-laden biomass. A series of new biochar-supported composite based on the combination of biochar and metallic nanoparticles(NPs)were produced through single-step pyrolysis of FeCl_3–Ti(OBu)_4 laden agar biomass under NH_3 environment.The physiochemical properties of composites were characterized thoroughly.It has found that heating temperature and N-doping through NH_3-ambiance pyrolysis significantly influence the visible-light sensitivity and bandgap energy of composites.The catalytic activities of composites were measured by degradation of Methylene Blue(MB)in the presence or absence of H_2O_2 and visible-light irradiation.Our best catalyst(N–TiO_2–Fe_3O_4-biochar)exhibits rapid and high MB removal competency(99.99%)via synergism of adsorption,photodegradation,and Fenton-like reaction.Continuous production of O_2U^-and UOH radicles performs MB degradation and mineralization,confirmed by scavenging experiments and degradation product analysis.The local trap state Ti^(3+),Fe_3O_4,and N-carbon of the catalyst acted as active sites.It has suggested that the Ti^(3+)and N-doped dense carbon layer improve charge separation and shuttle that prolonged photo-Fenton like reaction.Moreover,the catalyst is highly stable,collectible,and recyclable up to 5 cycles with high MB degradation efficiency.This work provides a new insight into the synthesis of highly visible-light sensitized biocharsupported photocatalyst through NH_3-ambiance pyrolysis of NPs-laden biomass.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第4期29-41,共13页 环境科学学报(英文版)
基金 supported by the National Basic Research Program of China (973 Program, 2014CB238903) the National Natural Science Foundation of China (Nos. 41672144, 41173032, and 41373110)
关键词 Biochar-supported photocatalyst N–TiO2–Fe3O4-biochar NH3-ambiance PYROLYSIS METHYLENE Blue Photocatalysis Biochar-supported photocatalyst N–TiO_2–Fe_3O_4-biochar NH_3-ambiance pyrolysis Methylene Blue Photocatalysis
  • 相关文献

同被引文献81

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部