摘要
Core-shell magnetic seeds with certain adsorption capacity that were prepared by sulfated roasting, served as the core of a magnetic separation technology for purification of starch wastewater. XRD and SEM results indicate that magnetite's surface transformed to be porous α-Fe_2O_3 structure. Compared with magnetite particles, the specific surface area was significantly improved to be 8.361 from 2.591 m^2/g, with little decrease in specific susceptibility. Zeta potential, FT-IR and XPS experiments indicate that both phosphate and starch adsorbed on the surface of the core-shell magnetic seeds by chemical adsorption, which fits well with the Langmuir adsorption model. The porous surface structure of magnetic seeds significantly contributes to the adsorption of phosphate and starch species, which can be efficiently removed to be 1.51 mg/L(phosphate) and 9.51 mg/L(starch) using magnetic separation.
Core-shell magnetic seeds with certain adsorption capacity that were prepared by sulfated roasting, served as the core of a magnetic separation technology for purification of starch wastewater. XRD and SEM results indicate that magnetite's surface transformed to be porous α-Fe_2O_3 structure. Compared with magnetite particles, the specific surface area was significantly improved to be 8.361 from 2.591 m^2/g, with little decrease in specific susceptibility. Zeta potential, FT-IR and XPS experiments indicate that both phosphate and starch adsorbed on the surface of the core-shell magnetic seeds by chemical adsorption, which fits well with the Langmuir adsorption model. The porous surface structure of magnetic seeds significantly contributes to the adsorption of phosphate and starch species, which can be efficiently removed to be 1.51 mg/L(phosphate) and 9.51 mg/L(starch) using magnetic separation.
基金
supported by the National Key Scientific Research Project(No.2018YFC1901602)
the National Natural Science Foundation of China(NSFC)(No.51804340)
the Innovation Driven Plan of Central South University(No.2018CX036)
the National 111 Project(No.B14034)
the Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,the Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources(No.2018TP1002)