期刊文献+

Application of a hybrid gravity-driven membrane filtration and dissolved ozone flotation(MDOF)process for wastewater reclamation and membrane fouling mitigation 被引量:1

Application of a hybrid gravity-driven membrane filtration and dissolved ozone flotation(MDOF)process for wastewater reclamation and membrane fouling mitigation
原文传递
导出
摘要 This study proposed a novel membrane filtration and dissolved ozone flotation integrated(MDOF) process and tested it at pilot scale. Membrane filtration in the MDOF process was operated in gravity-driven mode, and required no backwashing, flushing, or chemical cleaning. Because ozone was added in the MDOF process, ozonation, coagulation, and membrane filtration could occur in a single reactor. Moreover, in situ ozonation occurred in the MDOF process, which differs from the conventional pre-ozonation membrane filtration process. Significant enhancement of turbidity removal was further achieved through the addition of membrane filtration. Membrane fouling was mitigated in the MDOF process compared to the MDAF process. In situ ozonation in the MDOF process decreased the fluorescence intensity and transformed the high MW dissolved organics into small MW compounds. For the fouling layer, the extracellular polymeric substance(EPS) contents and cake layer morphology were analyzed. The results indicated that the contents of EPS decreased. Furthermore, a thinner and more loosely structured cake layer formed in the MDOF process. Because coagulation and ozonation occurred simultaneously in a single reactor, the generation of hydroxyl radicals was enhanced through the catalytic effect of Al-based coagulants on ozone decomposition, which further alleviated membrane fouling in the MDOF process. This study proposed a novel membrane filtration and dissolved ozone flotation integrated(MDOF) process and tested it at pilot scale. Membrane filtration in the MDOF process was operated in gravity-driven mode, and required no backwashing, flushing, or chemical cleaning. Because ozone was added in the MDOF process, ozonation, coagulation, and membrane filtration could occur in a single reactor. Moreover, in situ ozonation occurred in the MDOF process, which differs from the conventional pre-ozonation membrane filtration process. Significant enhancement of turbidity removal was further achieved through the addition of membrane filtration. Membrane fouling was mitigated in the MDOF process compared to the MDAF process. In situ ozonation in the MDOF process decreased the fluorescence intensity and transformed the high MW dissolved organics into small MW compounds. For the fouling layer, the extracellular polymeric substance(EPS) contents and cake layer morphology were analyzed. The results indicated that the contents of EPS decreased. Furthermore, a thinner and more loosely structured cake layer formed in the MDOF process. Because coagulation and ozonation occurred simultaneously in a single reactor, the generation of hydroxyl radicals was enhanced through the catalytic effect of Al-based coagulants on ozone decomposition, which further alleviated membrane fouling in the MDOF process.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第7期17-27,共11页 环境科学学报(英文版)
基金 supported by the National Natural Science Foundation of China(No.51708443) the National Key Research and Development Program of China(No.2016YFC0400701) the China Postdoctoral Science Foundation(No.2017M623326XB) the Shaanxi Provincial Department of Education Key Laboratory Research Projects(No.18JS057)
关键词 Dissolved OZONE FLOTATION Gravity-driven MEMBRANE filtration MEMBRANE fouling In situ ozonation Dissolved ozone flotation Gravity-driven membrane filtration Membrane fouling In situ ozonation
  • 相关文献

参考文献1

二级参考文献1

共引文献2

同被引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部