期刊文献+

城郊排水沟渠溶质传输的暂态存储影响及参数灵敏性 被引量:6

Influence of Transient Storage on Solute Transport and the Parameter Sensitivity Analysis in a Suburban Drainage Ditch
原文传递
导出
摘要 选择Na Cl为示踪剂,于2013年9~10月在合肥城郊的关镇河支渠开展5次瞬时投加示踪实验.从暂态存储、侧向补给和对流-扩散等作用机制层面,设置4种模拟情景,解析暂态存储作用对于排水沟渠溶质传输规律的影响,并对OTIS模型参数进行灵敏性分析.结果表明,暂态存储对于主流区Cl-模拟浓度穿透曲线(BTCs)峰值大小影响很大,相对偏差高达24.23%~117.26%,显著高于对峰值出现时间的影响,且暂态存储影响显著超过了侧向补给作用;由相关性分析,主流区Cl-模拟浓度BTCs峰值大小和出现时间的相对偏差与As/A具有极显著相关性;4个主要参数的灵敏度排序为A>As>α>D. From September to October 2013,five in-stream tracer experiments involving slug additions of chloride were performed in Guanzhenhe Branch,a headwater stream in suburban Hefei. From the perspective of different transport mechanisms such as transient storage,lateral inflow and advection-dispersion,four scenarios were set to analyze the effects of transient storage on solute transport in the drainage ditch. And sensitivity analysis of parameters in OTIS model was conducted. The results showed that transient storage exerted a significant influence on the peak values of simulated chloride concentration breakthrough curves( BTCs) in the main channel,and the REs( relative errors) of peak values in the BTCs ranged from 24. 23% to 117. 26%,which were much higher than those of the peak times. Meanwhile,the effects on simulated BTCs of transient storage markedly exceeded those of lateral inflow. Correlation analysis results showed that As/ A were significantly correlated with the peak value REs and the peak time RE’s,respectively.Moreover,the ranking of parameter sensitivity in OTIS model was A > As> α > D.
出处 《环境科学》 EI CAS CSCD 北大核心 2015年第2期481-489,共9页 Environmental Science
基金 国家自然科学基金项目(51179042)
关键词 暂态存储 参数灵敏性分析 OTIS模型 示踪实验 排水沟渠 transient storage parameter sensitivity analysis OTIS model tracer experiment drainage ditch
  • 相关文献

参考文献4

二级参考文献86

  • 1姜翠玲,范晓秋,章亦兵.农田沟渠挺水植物对N、P的吸收及二次污染防治[J].中国环境科学,2004,24(6):702-706. 被引量:62
  • 2滕彦国,左锐,王金生.地表水-地下水的交错带及其生态功能[J].地球与环境,2007,35(1):1-8. 被引量:32
  • 3Mulholland P J, Helton A M, Poole G C, et al. Stream denitrification across biomes and its response to anthropogenic nitrate loading [J]. Nature, 2008,452:202-206.
  • 4Craig L S, Palmer M A, Richardson D C, et al. Stream restoration strategies for reducing river nitrogen loads [J]. Frontiers in Ecology and the Environment, 2008,6(10):529-538.
  • 5Peterson B J, Wollheim W M, Mulholland P J, et al. Control of nitrogen export from watersheds by headwater streams [J]. Science, 2001,292:86-90.
  • 6Alexander R B, Boyer E W, Smith R A, et al. The rote of headwater stream in downstream water quality [J]. Journal of the American Water Resources Association, 2007,43(1):41-59.
  • 7Ensign S H, Doyle M W. Nutrient spiraling in streams and river networks [J]. Journal of Geophysical Research, 2006,111,G04009, doi: 10.1029/2005JG000114.
  • 8Wollheim W M, Vorosmarty C J, Peterson B J, et al. Relationship between river size and nutrient removal [J]. Geophysical Research Letters, 2006,33,L06410,doi: 10.1029/2006GL025845.
  • 9Claessens L, Tague C L, Groffman P M, et al. Longitudinal assessment of the effect of concentration on stream N uptake rates in an urbanizing watershed [J]. Biogeochemistry, 2010,98(113): 63-74.
  • 10Hester E R, Gooseff M. Moving beyond the banks: hyporheic restoration is fundamental to restoring ecological services and functions [J]. Environmental Science and Technology, 2010,44(5): 1521-1525.

共引文献34

同被引文献133

引证文献6

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部