期刊文献+

基于Contourlet和KPCA的焊接缺陷图像特征提取 被引量:8

Feature extraction for welding defect image based on contourlet transform and kernel principal component analysis
下载PDF
导出
摘要 为了进一步提高焊接缺陷识别的准确度和效率,提出了一种基于Contourlet变换和混沌粒子群优化核主成分分析(kernel principal component analysis,KPCA)的焊接缺陷图像特征提取方法.首先通过Contourlet变换将焊接缺陷图像进行多尺度分解,提取低频分量和特定方向上的高频分量;然后运用混沌粒子群优化后的KPCA分别提取缺陷训练样本和缺陷测试样本的特征;最后根据测试样本特征与训练样本特征之间的欧式距离确定缺陷测试样本的类型.结果表明,与基于核主成分分析特征提取法、基于小波的核主成分分析特征提取法相比,文中方法提取的特征更为完整,识别率更高,运行速度较快. In order to further improve the accuracy and efficiency of welding defect recognition,a method was proposed to extract feature of welding defect image based on contourlet transform and kernel principal component analysis( KPCA) by chaotic particle swarm optimization( CPSO). Firstly,multi-scale decomposition of welding defect images was performed by contourlet transform. Low-frequency components and high-frequency components in a certain direction were extracted. Then,features of training samples and testing samples of welding defects were extracted using KPCA by CPSO,respectively. Finally,the type of welding defect testing samples was determined according to the Euclidean distance between features of training samples and features of testing samples. A large number of experimental results show that,compared with the feature extraction method based on KPCA and the feature extraction method based on the combination of wavelet transform and KPCA,the proposed method can extract feature more completely and has higher recognition rate and operating speed.
出处 《焊接学报》 EI CAS CSCD 北大核心 2014年第7期17-21,104,113,共8页 Transactions of The China Welding Institution
基金 国家自然科学基金资助项目(60872065) 先进焊接与连接国家重点实验室开放基金资助项目(AWPT-M04) 江苏高校优势学科建设工程资助课题
关键词 焊接缺陷检测 特征提取 CONTOURLET变换 核主成分分析 混沌粒子群优化 welding defect detection feature extraction contourlet transform kernel principal component analysis chaotic particle swarm optimization
  • 相关文献

参考文献6

二级参考文献45

共引文献39

同被引文献74

  • 1程序,陶诗洋,王文山.一起110kV XLPE电缆终端局放带电检测及解体分析实例[J].中国电机工程学报,2013,33(S1):226-230. 被引量:30
  • 2高炜欣,汤楠,李琳,穆向阳.基于多层Hopfield神经网络的X射线焊缝气泡检测[J].机械工程学报,2007,43(4):193-197. 被引量:6
  • 3殷晓辉,韩晓微,高原,王刚.焊接缺陷X射线自动检测技术研究现状[J].电焊机,2007,37(11):28-31. 被引量:6
  • 4王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:145
  • 5Yong Wang, Hui Guo. Weld Defect Detection of X-ray Ima- ges Based on Support Vector Machine [ J ]. IETE Technical Review,2014,31 (2) : 137 - 142.
  • 6B Venkatraman, M M Anishin Raj, V Vaithiyanathan. Weld Defect Detection using Iterative Image Reconstruction Meth- ods [J]. Indian Journal of Science and Technology, 2013, 6(4) : 4378 -4383.
  • 7Yong Wang, Hui Guo. Weld Defect Detection of X-ray Ima- ges Based on Support Vector Machine [ J ]. IETE Technical Review, 2014, 31(2) : 137 - 142.
  • 8Debashis Sen, Sankar K Pal. Gradient histogram: Threshol- ding in a region of interest for edge detection[ J]. Image and Vision Computing, 2009, 28 (4) : 677 - 695.
  • 9Zhengqiu Zhang, Kaiyu Liu, Li Zhu. The new approxima- tion operators with S functions [ J ]. Journal of Applied Math- ematics and Computing, 2013, 42( 1 ): 455-468.
  • 10Jianji Wang, Nanning Zheng, Yuehu Liu. Parameter anal- ysis of fractal image compression and its applications in im- age sharpening and smoothing [ J ]. Signal Processing : Im- age Communieatiota, 2013, 28(6): 681 -687.

引证文献8

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部