摘要
通过在锥齿轮相对应的附件机匣壳体上固定加速度传感器,在发动机试车过程中采集锥齿轮振动信号,识别特征信号,运用时频分析法、低秩稀疏分解算法、稀疏正则算法、谱峭度法分别对锥齿轮故障特征信号进行分析处理,通过比较分析,表明低秩稀疏分解算法能够有效滤除噪声和谐波干扰信号,增强故障特征信号的显著性,识别锥齿轮潜在故障,解决了锥齿轮微弱振动信号难以分离和识别的技术难题,实现了航空发动机锥齿轮故障诊断,保证了锥齿轮工作可靠性和安全性,为航空发动机锥齿轮故障诊断提供了新方法。
By fixing the acceleration sensor on the ac-cessory casing corresponding to the bevel gear, the vibration signal of the bevel gear is collected during the engine test. The vibration signal is analyzed. The results show that the low-rank sparse decomposition algorithm can effectively filter out noise. The harmonic interference signal enhances the saliency of the fault characteristic signal, can effectively identify the potential fault of the bevel gear, solves the technical problem that the bevel gear weak vibration signal is difficult to separate and identify, realizes the aeroengine bevel gear fault diagnosis.
作者
陈礼顺
程礼
张晗
梁涛
陈超
CHEN Li-shun;CHENG Li;ZHANG Han(Aircraft Engineering College,Nanchang Hangkong University,Nanchang 330063;Aeronautics and Astronautics Engineering College,Air Force Engineering University,Xi'an 710038;Key Laboratory of Road Construction Technology and Equipment,Ministry of Education,Chang'an University,Xi'an 710064)
出处
《航空精密制造技术》
2019年第1期41-45,共5页
Aviation Precision Manufacturing Technology
关键词
航空发动机
锥齿轮
故障诊断
低秩稀疏分解
振动信号
aero-engine
bevel gear
fualt diagnosis
low-rank sparse decomposition
vibration signal