摘要
综合采取理论建模、高空自由落体试验及可视化仿真相结合的方法,研究了一种涡环伞降末敏子弹的稳态扫描动力学特性。基于第一类拉格朗日方程,建立了由弹体、降落伞、伞盘、摩擦盘、连杆所组成的五刚体动力学模型,并应用ADAMS、MATALB及VR相结合的方法进行了弹道计算和可视化仿真研究。通过在高空热气球上投放试验样弹的方法,得到了伞弹系统的运动图像、平均落速、转速等弹道数据。对比研究得出:涡环伞的运动稳定性良好,可使末敏子弹保持匀速旋转降落状态,弹体达到稳定后的落速约为13.5m/s,转速约为3r/s,稳态扫描角接近于弹体的静态悬挂角,仿真计算与试验结果的一致性较好。
The theoretical modeling,free-falling body and visual simulation methods were adopted to research the dynamic characteristics of the terminal-sensitive submunition with a vortex-ring parachute at steady-state scanning stage.According to the first Lagrange equation,the five-body dynamical model including the body,parachute,umbrella tray,friction disc and connecting rod was established.The ballistics calculation and visualization were implemented by combining ADAMS,MATALB and VR methods.The moving images,falling velocity and rotational speed were obtained by launching the test submunitions on a hot air balloon.A comparative study concluded that the vortex-ring parachute had the advantage of motion stability and could keep the terminal-sensitive submumition spinning at a constant speed in the process of free falling.The falling velocity in stability was 13.5 m/s,and the rotational speed was about 3 r/s.The steady-state scanning angle was close to the static hanging angle of the body.The simulation results were in good agreement with the flight test.
作者
张俊
曹守启
吴根水
赵松庆
刘荣忠
郭锐
ZHANG Jun;CAO Shouqi;WU Genshui;ZHAO Songqing;LIU Rongzhong;GUO Rui(College of Engineering Science and Technology,Shanghai Ocean University,Shanghai 201306,China;Aviation Key Laboratory of Science and Technology on Airborne Guided Weapons,China Airborne Missile Academy,Luoyang Henan 471009,China;Ministerial Key Laboratory of ZNDY,Nanjing University of Science and Technology,Nanjing 210094,China)
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2019年第6期1290-1296,共7页
Journal of Aerospace Power
基金
国家自然科学基金(11372136)
上海市科委创新行动计划(17050502000)
上海市临港管委会产学研合作项目(2017-056)
关键词
末敏子弹
降落伞
稳态扫描
多体动力学
飞行试验
飞行稳定性
terminal-sensitive submunition
parachute
steady-state scanning
multi-body dynamics
flight test
flight stability