期刊文献+

复合材料散斑检测中的小波降噪技术

Wavelet De~Noising of Shearography Image of NDT for Composite
下载PDF
导出
摘要 电子剪切散斑干涉检测技术非常适宜复合材料的无损检测。但散斑图像往往含有较大的噪声,如何对散斑图像进行降噪处理是一个非常重要的问题。小波变换是变分辨率的分析方法,可以有效地降低噪声,而同时又较好地保存了图像细节,本文应用小波降噪技术来对散斑图像进行降噪处理,取得了较好的效果。 Electronic shearography interfer-ence testing technology is extremely fitting for non~de-structive testing of composite. The tesing image of shearography includes much noise, so de~noising is a very important problem to resolve. Wavelet transforma-tion is multi~resolution analysis, which can reduce noise effectively and keep details of image at the same time. Wavelet de~noising technique is applied to reduce noise of shearography image and experimental result is satis-factory.
出处 《航空制造技术》 2008年第19期83-86,共4页 Aeronautical Manufacturing Technology
关键词 剪切散斑 小波变换 降噪 Shearography Wavelet transfor-mation Denoising
  • 相关文献

参考文献5

  • 1谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:254
  • 2Daubechies I.The wavelet transform:time~frequencylocalization and signal analysis[].IEEE Transactions on Information Theory.2001
  • 3Donoho D L.Denoising by soft~thresholding[].IEEE Trans on Information Technology.1995
  • 4VIDAKOVIC B,LOZOYA C B.On Time-dependent Wavelet Denoising[].IEEE Transactions on Signal Processing.1998
  • 5Donoho D L,Johnstone I M.Ideal spatial adaptation via waveletshrinkage[].Biometrika.1994

二级参考文献66

  • 1[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730.
  • 2[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310.
  • 3[11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882.
  • 4[12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543.
  • 5[13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85.
  • 6[14]Baraniuk R G. Wavelet soft-thresholding of time-frequency representations[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Texas USA,1994:71~74.
  • 7[15]Lun D P K, Hsung T C. Image denoising using wavelet transform modulus sum[A]. In:Proceedings of the 4th International Conference on Signal Processing[C]. Beijing China,1998:1113~1116.
  • 8[16]Hsung T C, Chan T C L, Lun D P K et al. Embedded singularity detection zerotree wavelet coding[A].In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:274~278.
  • 9[17]Krishnan S, Rangayyan R M. Denoising knee joint vibration signals using adaptive time-frequency representations[A]. In:Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering 'Engineering Solutions for the Next Millennium[C]. Alberta Canada, 1999:1495~1500.
  • 10[18]Liu Bin, Wang Yuanyuan, Wang Weiqi. Spectrogram enhancement algorithm: A soft thresholding-based approach[J]. Ultrasound in Medical and Biology, 1999,25(5):839~846.

共引文献253

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部