期刊文献+

Aeroelastic effect on aerothermoacoustic response of metallic panels in supersonic flow 被引量:3

Aeroelastic effect on aerothermoacoustic response of metallic panels in supersonic flow
原文传递
导出
摘要 A finite element formulation is presented for the analysis of the aeroelastic effect on the aerothermoacoustic response of metallic panels in supersonic flow. The first-order shear deformation theory(FSDT) and the von Karman nonlinear strain-displacement relationships are employed to consider the geometric nonlinearity induced by large deflections. The piston theory and the Gaussian white noise are used to simulate the mean flow aerodynamics and the turbulence from the boundary layer. The thermal loading is assumed to be steady and uniformly distributed, and the material properties are assumed to be temperature independent. The governing equations of motion are firstly formulated in structural node degrees of freedom by using the principle of virtual work,and then transformed and reduced to a set of coupled nonlinear Duffing oscillators in modal coordinates. The dynamic response of a panel is obtained by the Runge-Kutta integration method. The results indicate that the increasing aeroelastic effect can lead the panel vibration from a random motion to a highly ordered motion in the fashion of diffused limit cycle oscillations(LCOs), and remarkably alter the stochastic bifurcation and the spectrum of the aerothermoacoustic response.On the other hand there exists a counterbalance mechanism between the external random loading and the aeroelastic effect, which mainly functions through the nonlinear frequency-amplitude response. It is surmised that the aeroelastic effect must be considered in sonic fatigue analysis for panel structures in supersonic flow. A finite element formulation is presented for the analysis of the aeroelastic effect on the aerothermoacoustic response of metallic panels in supersonic flow. The first-order shear deformation theory(FSDT) and the von Karman nonlinear strain-displacement relationships are employed to consider the geometric nonlinearity induced by large deflections. The piston theory and the Gaussian white noise are used to simulate the mean flow aerodynamics and the turbulence from the boundary layer. The thermal loading is assumed to be steady and uniformly distributed, and the material properties are assumed to be temperature independent. The governing equations of motion are firstly formulated in structural node degrees of freedom by using the principle of virtual work,and then transformed and reduced to a set of coupled nonlinear Duffing oscillators in modal coordinates. The dynamic response of a panel is obtained by the Runge-Kutta integration method. The results indicate that the increasing aeroelastic effect can lead the panel vibration from a random motion to a highly ordered motion in the fashion of diffused limit cycle oscillations(LCOs), and remarkably alter the stochastic bifurcation and the spectrum of the aerothermoacoustic response.On the other hand there exists a counterbalance mechanism between the external random loading and the aeroelastic effect, which mainly functions through the nonlinear frequency-amplitude response. It is surmised that the aeroelastic effect must be considered in sonic fatigue analysis for panel structures in supersonic flow.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1635-1648,共14页 中国航空学报(英文版)
基金 supported by the National Natural Science Foundation of China (No. 11472216) support from China Scholarship Council (CSC) German Aerospace Center (DLR)
关键词 Aeroelastic effect Aerothermoacoustic response Metallic panels Nonlinear frequencyamplitude response Sonic fatigue Aeroelastic effect Aerothermoacoustic response Metallic panels Nonlinear frequencyamplitude response Sonic fatigue
  • 相关文献

同被引文献14

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部