期刊文献+

A new steering approach for VSCMGs with high precision 被引量:2

A new steering approach for VSCMGs with high precision
原文传递
导出
摘要 A new variable speed control moment gyro(VSCMG) steering law is proposed in order to achieve higher torque precision. The dynamics of VSCMGs is established, and two work modes are then designed according to command torque: control momentum gyro(CMG)/reaction wheel(RW) hybrid mode for the large torque case and RW single mode for the small. When working in the CMG/RW hybrid mode, the steering law deals with the gimbal dead-zone nonlinearity through compensation by RW sub-mode. This is in contrast to the conventional CMG singularity avoidance and wheel speed equalization, as well as the proof of definitely hyperbolic singular property of the CMG sub-mode. When working in the RW single mode, the motion of gimbals will be locked. Both the transition from CMG/RW hybrid mode to RW single mode and the reverse are studied. During the transition, wheel speed equalization and singularity avoidance of both the CMG and RW submodes are considered. A steering law for the RWs with locked gimbals is presented. It is shown by simulations that the VSCMGs with this new steering law could reach a better torque precision than the normal CMGs in the case of both large and small torques. A new variable speed control moment gyro(VSCMG) steering law is proposed in order to achieve higher torque precision. The dynamics of VSCMGs is established, and two work modes are then designed according to command torque: control momentum gyro(CMG)/reaction wheel(RW) hybrid mode for the large torque case and RW single mode for the small. When working in the CMG/RW hybrid mode, the steering law deals with the gimbal dead-zone nonlinearity through compensation by RW sub-mode. This is in contrast to the conventional CMG singularity avoidance and wheel speed equalization, as well as the proof of definitely hyperbolic singular property of the CMG sub-mode. When working in the RW single mode, the motion of gimbals will be locked. Both the transition from CMG/RW hybrid mode to RW single mode and the reverse are studied. During the transition, wheel speed equalization and singularity avoidance of both the CMG and RW submodes are considered. A steering law for the RWs with locked gimbals is presented. It is shown by simulations that the VSCMGs with this new steering law could reach a better torque precision than the normal CMGs in the case of both large and small torques.
机构地区 School of Astronautics
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1673-1684,共12页 中国航空学报(英文版)
基金 supported by the National Natural Science Foundation of China (No. 11272027)
关键词 Attitude CONTROL DEAD-ZONE nonlinearity Integrated SINGULARITY measurement SINGULARITY AVOIDANCE Variable SPEED CONTROL moment gyros(VSCMGs) Wheel SPEED EQUALIZATION Attitude control Dead-zone nonlinearity Integrated singularity measurement Singularity avoidance Variable speed control moment gyros(VSCMGs) Wheel speed equalization
  • 相关文献

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部