期刊文献+

正则化多项式回归的大鼠肝再生基因芯片数据分析 被引量:2

Data Analysis of Rat Liver Regeneration Gene Chip Based on Regularized Polynomial Regression
下载PDF
导出
摘要 针对大鼠肝再生基因表达谱芯片数据挖掘问题,根据肝再生的生理活动过程与时间有关的特点,将其转化为多分类问题,进而利用正则化多项式回归对每一个子过程分别进行相关基因选择.此外,还分析了所选择基因间的通路关系,验证了所选基因的生物合理性. Aiming at the problem of gene expression profile data mining in rat liver regeneration,and according to the characteristics of physiological process and time related to liver regeneration which is transformed into multiclassification problem. Then the regularized polynomial regression was used to select the genes for each subprocess.In addition,the relationship between the selected genes was analyzed and the biological rationality of the selected genes was verified.
作者 王小玉 王亚兰 常明明 WANG Xiaoyu;WANG Yalan;CHANG Mingming(Department of Public Basic Course Education,Zhengzhou Technology and Business University,Zhengzhou 450001,China;College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)
出处 《河南教育学院学报(自然科学版)》 2019年第1期10-13,共4页 Journal of Henan Institute of Education(Natural Science Edition)
基金 国家自然科学基金(61203293) 河南省高校科技创新人才(13HASTIT040) 河南省重点科技公关计划(172102210047) 河南省高等学校重点科研项目计划(18A520015) 郑州工商学院2018年度教育校级教学改革研究项目(GSJG201811)
关键词 多项式回归 正则化 肝再生 基因芯片 群体特征选择 polynomial regression regularization liver regeneration gene chip population feature selection
  • 相关文献

参考文献3

二级参考文献53

  • 1王红蔚,孔波.一种改进的加权支持向量机[J].河南师范大学学报(自然科学版),2011,39(3):167-170. 被引量:6
  • 2王路平,刘晓华.基于LMI的时滞细胞神经网络的指数稳定性分析[J].河南师范大学学报(自然科学版),2007,35(2):39-41. 被引量:2
  • 3Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
  • 4Shawe-Taylor J,Bartlett P,Williamson R,et al.Structural risk minimization over data-dependent hierarchies[J].IEEE Transactions on Information Theory,1998,44(5):1926-1940.
  • 5Cortes C,Vapnik V.Support vector networks[J].Machine Learning,1995,20:273-297.
  • 6Arun Kumar M,Gopal M.Least squares twin support vector machines for pattern classification[J].Expert Systems with Applications,2009,36(4):7535-7543.
  • 7Wang L,Zhu J,Zou H.The doubly regularized support vector machine[J].Statistica Sinica,2006,16:589-615.
  • 8Wang L,Zhu J,Zou H.Hybrid huberized support vector machines for microarray classification and gene selection[J].Bioinformatics,2008,24(3):412-419.
  • 9Zhu J,Rosset S,Hastie T,et al.1-norm support vector machines[J].Advances in Neural Information Processing Systems,2004,16:49-56.
  • 10Tibshirani R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society,Series B,1996,58:267-288.

共引文献11

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部