期刊文献+

γ演算到Action演算的转换

Translating γ-Calculus into Action Calculus
下载PDF
导出
摘要 Action演算簇(action calculi)作为描述不同并发交互行为的数学框架,可以表示一大类具有某些相同特性的并发形式化模型.试图把g演算(一种基于约束的高阶并发计算模)也包含在action演算簇的框架下.首先定义了一个具体的action演算AC(Kg),然后给出了从g演算到AC(Kg)转换的形式描述,最后在定义AC(Kg)的可观察性、弱互模拟关系和弱等价关系的基础上,以p演算为中间表示,证明了这种转换保持了g演算的弱行为等价性.研究表明,action演算簇可以表示基于约束的并发模型,从而充分说明了action演算簇的描述能力,并且为在action演算簇框架下把g演算与其他并发模型结合并进行比较提供了前提. Action calculi is introduced as a mathematical framework for expressing different interactive behaviors, which shows the advantages in representing different interactive models with some common features. In this paper, action calculi is used to include g-calculus (a computational calculus for higher-order concurrent programming) in its setting. First, a concrete action calculus AC(Kg) is defined. Then the formal compositional translation of the g-calculus into AC(Kg) is presented. Finally, upon definitions of the observability, the weak barbed bisimularity as well as the weak barbed congruence for AC(Kg), it is proved that such translation preserves the weak behavioural equivalence of the g-calculus with the p-calculus as intermediate. This work not only shows the expressiveness of action calculi, but also provides precondition for uniting and comparing g-calculus with other concurrent models under the theory of action calculi.
作者 金英 金成植
出处 《软件学报》 EI CSCD 北大核心 2003年第1期16-22,共7页 Journal of Software
基金 (国家自然科学基金) No.60073041~
关键词 γ演算 ACTION演算 弱等价关系 程序设计语言 函数式语言 action calculi g-calculus translation weak barbed congruence
  • 相关文献

参考文献11

  • 1[1]Milner R. Action calculi, or concrete action structures. In: Borzyszkowski AM, Sokolowski S, eds. Proceedings of the 18th International Symposium on Mathematical Foundations of Computer Science. LNCS 711, Berlin: Springer-Verlag, 1993. 105~121.
  • 2[2]Milner R. Calculi for interaction. Acta Informatica, 1996,33(8):707~737.
  • 3[3]Gardner P, Hasegawa M. Higher-Order and reflexive action calculi: their type theory and models. 1998. http://www.cl.cam.ac.uk/ users/pag20/horac.ps.gz.
  • 4[4]Barber A, Gardner P, Hasegawa M, Plotkin G. From action calculi to linear logic. In: Nielsen M, Thomas W, eds. Computer Science Logic, Proceedings of the 11th International Workshop (CSL'97). LNCS 1414, Berlin: Springer-Verlag, 1998. 78~97.
  • 5[5]Gadducci F, Montanari U. Comparing action calculi and tile logic: on the operational semantics of p-calculus. 1999. http://www.dsi. unive.it/~lopstr99/W40/PS/gadducci.pdf.
  • 6[6]Gardner P, Wischik L. Explicit fusions. In: Nielson M, Rovan B, eds. Proceedings of the 25th International Symposium, Mathematical Foundations of Computer Science 2000. LNCS 1893, Berlin: Springer-Verlag, 2000. 373~383.
  • 7[7]Leifer J. Operational congruences for reactive systems [Ph.D. Thesis]. Computer Laboratory, University of Cambridge, 2001.
  • 8[8]Gardner P, Milner R, Sewell P. Calculi for interactive systems: theory and experiment. 2001. http://www.doc.ic.ac.uk/~pg/ final2001.html.
  • 9[9]Smolka G. A foundation for higher-order concurrent constraint programming. Research Report, RR-94-16, Saarbrücken: The German Research Center for Artificial Intelligence GmbH (DFKI), 1994.
  • 10[10]Henz M, Mehl M, Müller M, Müller T, Niehren J, Scheidhauer R, Schulte C, Smolka G, Treinen R, Würtz J. The Oz Handbook. Saarbrücken: The German Research Center for Artificial Intelligence GmbH (DFKI), 1994.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部