期刊文献+

扰动算子的群可逆性及其表示

下载PDF
导出
摘要 本文利用算子分块矩阵表示,给出了群可逆算子在一个扰动下仍然群可逆的充分条件,并给出了扰动算子群逆的表达式及其相关的误差估计界。
作者 胡春梅
出处 《河南科技》 2013年第4X期194-194,共1页 Henan Science and Technology
  • 相关文献

参考文献5

  • 1杨凯凡,杜鸿科.扰动算子的Drazin可逆性及其Drazin逆的表达[J].数学学报(中文版),2010,53(6):1187-1192. 被引量:3
  • 2Zeidler E.Nonlinear Functional Analysis and its Applications Ⅱ/B: Nonlinear Monotone operators[]..1990
  • 3Ben Israel A,Greville TNE.Generalized Inverses: Theory and Applications[]..1974
  • 4Castro N,Koliha J J,Wei Yi Min.Integral representation of Dra-zin inverse AD[].Electronical JLinear Algebra.2002
  • 5DJORDJEVIC D.S.,VLADIMIRI RAKOCEVIC。.Lectureson generalized inverse. Faculty of Sciences and Mathematics:University of NiS . 2008

二级参考文献14

  • 1Wang G., Wei Y., Qiao S., Generalized Inverses: Theory and Computations, Graduate Series in Mathematics, vol. 5, Beijing: Science Press, 2004.
  • 2Conway J. B., A Course in Functional Analysis, Springer-Verlag, New York Inc. 1990.
  • 3Du H. K., Deng C. Y., The representation and characterization of Drazin inverses of operators on a Hilbert space, Linear Algebra and its Applications, 2005, 407: 117-124.
  • 4Du H. K., Yang K. F., Lian T. Y., Perturbations of Drazin invertible operators, has submitted.
  • 5Gonzalez N. C., Additive perturbation results for the Drazin inverse, Linear Algebra and its Applications, 2005, 397: 279-297.
  • 6Gonzalez N. C., Dopazo E., Representations of the Drazin inverse for a class of block matrices, Linear Algebra and its Applications 2005, 400: 253-269.
  • 7Li X., Wei Y., An expressing of the Drazin inverse of a perturbed matrix, Applied Mathematics and Uompuration, 2004, 153: 187-198.
  • 8Wei Y., The Drazin inverse of updating of a square matrix with application to perturbation formula, Applied Mathematics and Computation, 2007, 108: 77-83.
  • 9Li X., Wei Y., A note on the perturbation bound of the Drazin inverse, Applied Mathematics and Computation, 2003, 140: 329-340.
  • 10Wei Y., Qiao S., The representation and approximation of the Drazin inverse of a linear operator in Hilbert space, Applied Mathematics and Computation, 2003, 138:77- 89.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部