扰动算子的群可逆性及其表示
摘要
本文利用算子分块矩阵表示,给出了群可逆算子在一个扰动下仍然群可逆的充分条件,并给出了扰动算子群逆的表达式及其相关的误差估计界。
出处
《河南科技》
2013年第4X期194-194,共1页
Henan Science and Technology
参考文献5
-
1杨凯凡,杜鸿科.扰动算子的Drazin可逆性及其Drazin逆的表达[J].数学学报(中文版),2010,53(6):1187-1192. 被引量:3
-
2Zeidler E.Nonlinear Functional Analysis and its Applications Ⅱ/B: Nonlinear Monotone operators[]..1990
-
3Ben Israel A,Greville TNE.Generalized Inverses: Theory and Applications[]..1974
-
4Castro N,Koliha J J,Wei Yi Min.Integral representation of Dra-zin inverse AD[].Electronical JLinear Algebra.2002
-
5DJORDJEVIC D.S.,VLADIMIRI RAKOCEVIC。.Lectureson generalized inverse. Faculty of Sciences and Mathematics:University of NiS . 2008
二级参考文献14
-
1Wang G., Wei Y., Qiao S., Generalized Inverses: Theory and Computations, Graduate Series in Mathematics, vol. 5, Beijing: Science Press, 2004.
-
2Conway J. B., A Course in Functional Analysis, Springer-Verlag, New York Inc. 1990.
-
3Du H. K., Deng C. Y., The representation and characterization of Drazin inverses of operators on a Hilbert space, Linear Algebra and its Applications, 2005, 407: 117-124.
-
4Du H. K., Yang K. F., Lian T. Y., Perturbations of Drazin invertible operators, has submitted.
-
5Gonzalez N. C., Additive perturbation results for the Drazin inverse, Linear Algebra and its Applications, 2005, 397: 279-297.
-
6Gonzalez N. C., Dopazo E., Representations of the Drazin inverse for a class of block matrices, Linear Algebra and its Applications 2005, 400: 253-269.
-
7Li X., Wei Y., An expressing of the Drazin inverse of a perturbed matrix, Applied Mathematics and Uompuration, 2004, 153: 187-198.
-
8Wei Y., The Drazin inverse of updating of a square matrix with application to perturbation formula, Applied Mathematics and Computation, 2007, 108: 77-83.
-
9Li X., Wei Y., A note on the perturbation bound of the Drazin inverse, Applied Mathematics and Computation, 2003, 140: 329-340.
-
10Wei Y., Qiao S., The representation and approximation of the Drazin inverse of a linear operator in Hilbert space, Applied Mathematics and Computation, 2003, 138:77- 89.
-
1于静.Hilbert C*-模上的Fredholm算子与正则算子[J].中国科技信息,2009(6):43-44.
-
2杨守建.非自伴的对称闭算子在扰动下的谱[J].西南民族大学学报(自然科学版),2007,33(2):225-228.
-
3胡春梅.扰动算子的加W-权Drazin可逆性及其表示[J].科技信息,2013(8):46-47.
-
4杨凯凡,杜鸿科.扰动算子的Drazin可逆性及其Drazin逆的表达[J].数学学报(中文版),2010,53(6):1187-1192. 被引量:3
-
5许俊莲,杜鸿科.算子方程AXA^*=B的解[J].西安文理学院学报(自然科学版),2008,11(2):7-9. 被引量:6
-
6许俊莲,杜鸿科.1×2算子矩阵的Moore-Penrose逆[J].陕西师范大学学报(自然科学版),2008,36(2):11-14. 被引量:4
-
7窦艳妮,杜鸿科.广义逆在幂等算子表示中的应用[J].陕西师范大学学报(自然科学版),2011,39(6):10-13. 被引量:2
-
8许俊莲.算子AB值域的闭性[J].宝鸡文理学院学报(自然科学版),2012,32(1):30-31.
-
9齐雅茹,黄俊杰,阿拉坦仓.无界形式Hamilton算子的可逆性[J].数学物理学报(A辑),2014,34(5):1188-1195. 被引量:4
-
10徐小明,许俊莲,杜鸿科.广义特征值的稳定性及刻画[J].纺织高校基础科学学报,2008,21(1):52-54.