期刊文献+

一种局部搜索能力增强的狮群算法 被引量:4

An enhanced local search lion optimization algorithm
下载PDF
导出
摘要 狮群算法作为一种新型群智能优化算法,其进化过程多依据狮群猎食、交配等动物本性出发,因此难免会存在收敛速度慢并且不容易发现全局极值等缺点.针对当前基本狮群算法存在的缺点,提出一种局部搜索能力增强的狮群算法(Enhanced Local Search Lion Optimization Algorithm,ELSLOA).为增强种群局部搜索效率,对所有领地狮引入对立搜索方法提高寻优能力,并对优良个体执行Levy flight操作,提高个体局部开采能力,最后利用Tent混沌搜索对领地狮和流浪狮执行混沌操作.对算法进行了函数的仿真对比分析,充分验证了所提出算法的优良性能. Lion algorithm is a new swarm intelligent evoluationary optimization algorithm,and the evoluation process almostly follow the animal nature,such as prey and mating,so inevitably easy trap into local optimutun.Aiming at the deficiency of the basic lion algorithm,this paper proposes a new modified version,named as enhanced local search lion optimization algorithm(ELSLOA).In order to enhance the local evolution efficiency,the territorial lion individual can be updated with opposition-based learning method,and the excellent individual perform the Levy flight operation in order to enhance the local exploitation ability.Tent chaos search operation can be executed on the population.Simulation of benchmark functions proved that the proposed algorithm performs well than other algorithms.
作者 刘振 郭恒光 任建存 Liu Zhen;Guo Hengguang;Ren Jiancun(College of Coastal Defense Force,Naval Aeronautical University,Yantai 264001,China)
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2019年第3期35-41,共7页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(51605487)
关键词 狮群算法 反向搜索 LEVY FLIGHT Tent混沌 lion algorithm opposition-based search Levy flight Tent chaos
  • 相关文献

参考文献4

二级参考文献29

  • 1KARABOGA D. An idea based on honey bee swarm for numerical optimization, Technical Report-TR06 [R]. Kayseri, Turkey : Erciyes University, 2005.
  • 2YANG Xinshe. Nature-inspired metaheuristic algorithms[M]. Frome, UK: Luniver Press, 2008: 79-90.
  • 3KRISHNANAND K N, GHOSE D. Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions [ J ]. Swarm Intelligence, 2009, 3 (2) : 87-124.
  • 4YANG Xinshe. A new metaheuristic bat-inspired algorithm [ M]//GONZALEZ J R, PELTA D A. Nature Inspired Cooperative Strategies for Optimization. Berlin: Springer-Verlag, 2010: 65-74.
  • 5LEMMA T A, HASHIM B M. Use of fuzzy systems and bat algorithm for exergy modeling in a gas turbine generator [ C ]//Proceedings of IEEE Colloquium on Humanities, Science and Engineering. Penang, Malaysia, 2011: 305-310.
  • 6BORA T C, COELHO L S, LEBENSZTAJN L. Bat-inspired optimization approach for the brushless DC wheel motor problem[ J]. IEEE Transactions on Magnetics, 2012, 48 (2) : 947-950.
  • 7VISWANATHAN G M, AFANASYEV V, BULDYREV S V, et al. Levy flight search patterns of wandering albatros- ses[J]. Nature, 1996, 381: 413-415.
  • 8EDWARDS A M, PHILLIPS R A, WATKINS N W, et al. Revisiting Levy Night search patterns of wandering albatrosses, bumblebees and deer[J]. Nature, 2007, 449: 1044-1048.
  • 9REYNOLDS A M, SMITH A D, REYNOLDS D R, et al. Honeybees perform optimal scale-free searching flights when attempting to locate a food source [ J ]. The Journal of Experimental Biology, 2007, 210(21): 3763-3770.
  • 10REYNOLDS A M, FRYE M A. Free-flight odor tracking in drosophila is consistent with an optimal intermittent scale-free search[J]. PLoS One, 2007, 2(4): 1-9.

共引文献88

同被引文献41

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部