期刊文献+

统计学习理论及支持向量机概述 被引量:12

Introduction Statistical Learning Theory and Support Vector Machines
下载PDF
导出
摘要 针对传统统计模式识别理论中基于大数定理的假设,介绍了统计学习理论和以该理论为基础的支持向量机模式识别方法。指出了以结构风险最小化为原则的分类器设计方法,即同时兼顾分类能力最优化和经验风险最小化。支持向量机是统计学习理论的VC维理论和结构风险最小原理的具体实现,他通过非线性变换将输入空间变换到一个高维空间,然后在这个新空间中求取最优线性分类面。 The statistic learning theory and the method of supporting vector mechanism pattern identification base on it are described aiming to the hypothesis of big number theorem in traditional pattern identification theory. Presents the design methods of classification implement according to the minimum structure risk, namely according to both optimization of classification ability and minimum of experience risk. The supporting vector mechanism is the concrete realization of VC dimension theory of statistic learning theory and minimum structure risk principle which transform the income space into a high dimension space through non -linearity transformation and seek the optimum linearity classification facet.
出处 《现代电子技术》 2003年第4期59-61,共3页 Modern Electronics Technique
关键词 统计学习理论 支持向量机 VC维 结构风险 模式识别方法 statistical learning theory support vector machines: VC dimensions structure risk
  • 相关文献

参考文献2

二级参考文献15

  • 1[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 2[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 3[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 4[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 5[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 6[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953
  • 7[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31
  • 8[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Applications.AI Memo 1602,MIT AI Lab,1997
  • 9[9]Osuna E,Freund R,Girosi F.An Improved Training Algorithm for Support Vector Machines.In:Principe J,Gile L,Morgan N,Wilson E eds.,Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing,New York:IEEE,1997:276~285
  • 10[10] Joachims T.Making Large-Scale SVM Learning Practical.In:Schol-kopf B,Burges C J C,Smola A eds.,Advances in Kernel Methods Support Vector Learning,Cambridge,MA:MIT Press,1998:169~184

共引文献2343

同被引文献84

引证文献12

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部