摘要
利用Laplace变换 ,采用与静弹性相比拟的方法 ,导出了频域中有限元法公式 .并利用一组满足频域中弹性运动方程的通解作为单元的位移函数 ,获得了频域中矩形单元的刚度矩阵 .
The Laplace transform is utilized to construct the formulation of the finite element by approaching the elastostatic problem. By utilizing the general solution of the governing equations of motion in the Laplace transformed domain as the displacement function, the rectangular element stiffness matrix in the Laplace transformed domain is obtained. As a numerical example, the dynamic response of a beam is calculated.
出处
《武汉大学学报(工学版)》
CAS
CSCD
北大核心
2002年第6期48-51,共4页
Engineering Journal of Wuhan University
关键词
LAPLACE变换
有限元法
矩形单元
动响应
Laplace transform
finite element method
rectangular element
dynamic response