摘要
Implementation of laser-plasma-based acceleration stages in user-oriented facilities requires the definition and deployment of appropriate diagnostic methodologies to monitor and control the acceleration process.An overview is given here of optical diagnostics for density measurement in laser-plasma acceleration stages,with emphasis on wellestablished and easily implemented approaches.Diagnostics for both neutral gas and free-electron number density are considered,highlighting real-time measurement capabilities.Optical interferometry,in its various configurations,from standard two-arm to more advanced common-path designs,is discussed,along with spectroscopic techniques such as Stark broadening and Raman scattering.A critical analysis of the diagnostics presented is given concerning their implementation in laser-plasma acceleration stages for the production of high-quality GeV electron bunches.
Implementation of laser-plasma-based acceleration stages in user-oriented facilities requires the definition and deployment of appropriate diagnostic methodologies to monitor and control the acceleration process.An overview is given here of optical diagnostics for density measurement in laser-plasma acceleration stages,with emphasis on wellestablished and easily implemented approaches.Diagnostics for both neutral gas and free-electron number density are considered,highlighting real-time measurement capabilities.Optical interferometry,in its various configurations,from standard two-arm to more advanced common-path designs,is discussed,along with spectroscopic techniques such as Stark broadening and Raman scattering.A critical analysis of the diagnostics presented is given concerning their implementation in laser-plasma acceleration stages for the production of high-quality GeV electron bunches.
基金
support from the European Unions Horizon 2020 research and innovation program under Grant Agreement No.653782-EuPRAXIA
the MIUR-funded Italian research Network ELI-Italy