摘要
在分析现有处理矩阵恢复问题的非凸秩最小化算法的基础上,提出了一种基于超松弛迭代的改进算法,并给出了松弛因子ω的确定准则。仿真实验表明:在惩罚参数选取较大的情形下,改进算法较原算法具有更快的收敛速度及更高的收敛精度,同时展示了基于非凸秩最小化算法的矩阵恢复技术在图像去噪中的应用。
This paper proposes a kind of nonlinear successive over -relaxation improved algorithm to solve ma-trix recovery problems on the basis of analyzing the nature of existing non -convex rank minimization algo-rithm,and the modifying criteria of relaxation factor ωis also given.Experimental results show that the im-proved algorithm usually has much faster convergence rate and higher precision than the original one when the penalty parameter is relatively large .In addition,the paper expounds applications of matrix recovery technolo-gy based on non-convex rank minimization algorithms in image denoising .
出处
《湖北理工学院学报》
2015年第1期21-26,共6页
Journal of Hubei Polytechnic University
基金
湖北省自然科学基金项目(项目编号:2009CDB077)
湖北理工学院校级科研项目(项目编号:09yjr52Q)
关键词
矩阵恢复
非凸秩最小化算法
收敛速率
图像去噪
matrix recovery
non-convex rank minimization algorithm
convergence analysis
image denoising