期刊文献+

一种改进的非凸秩最小化算法及其在矩阵恢复中的应用 被引量:1

An Improved Non-convex Rank Minimization Algorithm and Its Application in Matrix Recovery
下载PDF
导出
摘要 在分析现有处理矩阵恢复问题的非凸秩最小化算法的基础上,提出了一种基于超松弛迭代的改进算法,并给出了松弛因子ω的确定准则。仿真实验表明:在惩罚参数选取较大的情形下,改进算法较原算法具有更快的收敛速度及更高的收敛精度,同时展示了基于非凸秩最小化算法的矩阵恢复技术在图像去噪中的应用。 This paper proposes a kind of nonlinear successive over -relaxation improved algorithm to solve ma-trix recovery problems on the basis of analyzing the nature of existing non -convex rank minimization algo-rithm,and the modifying criteria of relaxation factor ωis also given.Experimental results show that the im-proved algorithm usually has much faster convergence rate and higher precision than the original one when the penalty parameter is relatively large .In addition,the paper expounds applications of matrix recovery technolo-gy based on non-convex rank minimization algorithms in image denoising .
出处 《湖北理工学院学报》 2015年第1期21-26,共6页 Journal of Hubei Polytechnic University
基金 湖北省自然科学基金项目(项目编号:2009CDB077) 湖北理工学院校级科研项目(项目编号:09yjr52Q)
关键词 矩阵恢复 非凸秩最小化算法 收敛速率 图像去噪 matrix recovery non-convex rank minimization algorithm convergence analysis image denoising
  • 相关文献

参考文献10

  • 1Amir Beck,Marc Teboulle.A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences . 2009
  • 2Shen Y,Wen Z,Zhang Y.Augmented lagrange alternating ditrction method for matrix separation based on low-rank factorization. Journal on Imaging Sciences . 2009
  • 3MIZUNO K,TAKAGE K,LZUMI S,et al.A Sub-100mw Dual-core HOG Accelerator VLSI for Parallel Feature Extraction Processing For HDTV Resolution Video. IEICE Transactions on Electronics . 2013
  • 4Li H.Research on quality evaluation method based on the gradient of structural similarity image. . 2012
  • 5Bertsekas D.Constrained optimization and Lagrange multiplier methods. . 1982
  • 6Lin Z,Chen M,Massat S.The augmented lagrange multiplie method for exact recovery of a corrupted low-rank matrices. IEEE Transactions on Signal Processing . 2006
  • 7Emmanuel J. Candès,Xiaodong Li,Yi Ma,John Wright.Robust principal component analysis?[J]. Journal of the ACM (JACM) . 2011 (3)
  • 8Rotation invariant pattern recognition using ridgelets, wavelet cycle-spinning and Fourier features[J]. Pattern Recognition . 2005 (12)
  • 9Emmanuel J. Candès,Benjamin Recht.Exact Matrix Completion via Convex Optimization[J]. Foundations of Computational Mathematics . 2009 (6)
  • 10石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:712

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献712

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部