期刊文献+

AA6013铝合金光纤激光焊凝固裂纹影响因子研究 被引量:2

Research on impact factors of solidification crack of AA6013 aluminum alloy by fiber laser welding
下载PDF
导出
摘要 凝固裂纹是汽车用铝合金AA6013在激光焊过程中极易形成的一种焊接缺陷。为了提高焊接质量,文中对AA6013铝合金高功率光纤激光焊时的凝固裂纹影响因子开展了系统研究。通过分析激光功率、焊接速度、焊缝位置等不同影响因子下的凝固裂纹敏感性,利用响应面优化法的Box-Behnken Design (BBD)建立了裂纹率与影响因子关系的相应模型,获得了关键参量,从而能够有效控制凝固裂纹的萌生。最后,利用光学显微镜和扫描电子显微镜对凝固裂纹的形貌特征进行了观察,发现Al与Mg2Si, Al2Cu形成的低熔点共晶体是6013铝合金焊接凝固裂纹产生的冶金因素。本研究结果可为抑制铝合金光纤激光焊过程中的凝固裂纹提供试验依据。 Solidification crack is one of the common welding defects in the laser welding of AA6013 aluminum alloy.To improve the welding quality,the sensitivity factors of AA6013 aluminum alloy in high power fiber laser welding was investigated in this paper.Solidification crack sensitivity was analyzed under different conditions including laser power,welding velocity and weld position by using Box-Behnken Design(BBD)to set up a model between crack rate and influencing factors.As a result,key parameters were attained to help control the initiation of solidification crack.Besides,optical microscopy(OM)and scanning electron microscopy(SEM)were used to analyze the crack surface and fracture morphology.It was noted that solidification crack in AA6013 aluminum alloy was caused by the fracture of intergranular liquid film.The research results provided experimental evidence to prevent solidification crack during the process of fiber laser welding of AA6013 aluminum alloy.
作者 赵北明 王小杰 韩振宇 刘春景 仇丹丹 ZHAO Bei-ming;WANG Xiao-jie;HAN Zhen-yu;LIU Chun-jing;QIU Dan-dan(Lingyun Industrial Co.,Ltd.,Shanghai Lingyun Automobile R&D Branch,Shanghai 201708,China)
出处 《焊接技术》 2019年第7期11-15,1,共6页 Welding Technology
关键词 激光材料加工 AA6013铝合金 凝固裂纹 影响因子 laser materials processing AA6013 aluminum alloy solidification crack sensitivity factors
  • 相关文献

参考文献2

二级参考文献16

  • 1国旭明,杨成刚,钱百年,常云龙,张洪延.高强Al-Cu合金脉冲MIG焊工艺[J].焊接学报,2004,25(4):5-9. 被引量:28
  • 2李慧中,张新明,陈明安,周卓平.热处理制度对2519铝合金晶间腐蚀性能的影响[J].材料热处理学报,2005,26(1):20-23. 被引量:25
  • 3范成磊,梁迎春,杨春利,程士军.2519高强铝合金双丝GMAW焊接工艺[J].焊接学报,2006,27(10):15-18. 被引量:12
  • 4L. S. Kramer, T. P. Blair, S. D. Blough et al.. Stress-corrosion cracking susceptibility of various product forms of aluminum alloy 2519[J]. J. Materials Engineering and Performance, 2002, 11(6):l645-650.
  • 5B. C. Hamilton, A. Saxena. Transient crack growth behavior in aluminum alloys C415-T8 and 2519 T87 [J]. Engineering Fracture Mechanics, 1999, 62(1) :1-22.
  • 6J. J. Fisher, L. S. Kramer, J. R. Pickens. Aluminum alloy 2519 in military vehicles [J]. Advanced Material and Processes, 2002, 160(9) :43-46.
  • 7S. M. Devincent, J. H. Devletian, S. A. Gedeon. Weld properties of the newly developed 2519 T87 aluminum armor alloy [J]. Welding Journal, 1988, 67(7):33-43.
  • 8R. G. Ding, O. A. Ojo, M. C. Chaturvedi. Fusion zone microstructure of laser beam welded directionally solidified Ni3 Al-base alloy IC6 [J]. Scripta Materialia, 2006, 54(5): 859-864.
  • 9A. Gutierrez, J. C. Lippold. A proposed mechanism for equiaxed grain formation along the fusion boundary in aluminum copper lithium alloy [J]. Welding Journal, 1998, 77 (3) :123-132.
  • 10G. M. Reddy, A. A. Gokhale, K. S. Prafad. Chill zone formation in Al-Li alloy welds [J]. Science and Technology of Welding and Joining, 1998, 3(4):208-212.

共引文献48

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部