期刊文献+

数据挖掘中的数据缺失处理 被引量:1

The Treatment of Missing Data in Data Mining
原文传递
导出
摘要 数据缺失是数据挖掘中不可避免和必须解决的问题,目前常见的缺失值填充方法主要有统计学方法和机器学习方法。KNNI是一种数据挖掘领域常用的非常简单的同时准确率较高的缺失值填补算法;SNI填补算法则克服了KNNI在选择k最近邻时存在的某种偏好的缺点,更好地解决了数据缺失问题。 Missing data is an unavoidable and critical problem which must be resolved in data mining. The current common missing data imputation methods include statistical analysis methods and machine learning. KNNI is a very simple and highly accurate missing value imputation method in data mining field. SNI algorithm will solve the problem that the KNNI algorithm is often biased in choosing the k nearest neighbors of missing data and better solve the problem of missing data.
作者 宋焕林
机构地区 河套学院理学系
出处 《河套学院论坛》 2016年第3期95-98,共4页 HETAO COLLEGE FORUM
基金 内蒙古自治区高等学校科学研究项目(NJZY14335)
关键词 数据挖掘 缺失数据 KNNI SNI data mining missing data KNNI SNI
  • 相关文献

同被引文献14

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部