摘要
本文研究下列平面椭圆型方程的Riemann=Hilbert边值问题 这里,且复部丫0(z)≠0;G为单位圆盘,r:|z|=1,我们利用一类积分表达式,给出了问题的解的构造,将问题化为一个第二类Fredholm型分方程来求解。
In this paper, the Riemann - Hilbert boundary value problems for elliptic equations in the plane
are consiered, where ∈ is a paramer; Akj , Bkj∈Lp
(Ω), p<2; h(z)∈Lp(Ω); A(z)∈Hα(Γ and λ0(z)≠0;Ω is unit disk; Γ: |z|=1 By using integral representation formula, the solution of this problem is constructed We tranformed the problem into the Fredholm integral of second kind.
出处
《怀化学院学报》
1988年第6期6-13,共8页
Journal of Huaihua University
关键词
椭圆型方程组
超解析函数
生成解
紧算子
Fredholm选择定理
Elliptic equations, Hyperanalytic functions
Generate solution, Compact operator, Fredholm alternative theorem.