期刊文献+

In-Zinerater液态包层输运燃耗数值模拟 被引量:1

Transport and Burnup Numerical Simulation on the Liquid Blanket Burnup of In-Zinerater
原文传递
导出
摘要 Z-Pinch惯性约束聚变是未来一种有竞争力的能源候选方案。Z-Pinch驱动的聚变裂变混合堆可高效地嬗变反应堆乏燃料中分离出的超铀元素。对美国Sandia国家实验室提出的In-Zinerater混合堆概念进行了中子学分析和数值模拟。在三维输运燃耗耦合程序MCORGS中增加了处理在线添加燃料与去除裂变产物的功能,实现了对液态燃料燃耗过程的模拟。增加6Li丰度和燃料初装量保持寿期初反应性不变,可以减缓寿期内反应性下降趋势。逐步增加包层内超铀元素装量,可以控制整个寿期内反应性基本恒定。聚变功率取20 MW,通过反应性控制,5年内包层能量放大倍数在160~180之间,氚增殖比在1.5~1.7之间,优于In-Zinerater基准设计方案。 Z-Pinch Inertial confinement fusion is a competitive candidate for future energy solution. A fusion-fission hybrid driven by Z-Pinch can be used to transmute transuranic elements from spent fuels of reactors efficiently. Analysis and numerical simulation of blanket neutronics of In-Zinerater, which is a fusion-fission hybrid concept design in Sandia National Laboratories, is given in this paper. Modification to the three dimension transport and burnup code MCORGS are done, so as to simulate continuous feeding and continuous chemical processing of the liquid fuel. Different combination of initial enrichment of 6Li and fuels loading in the blanket are selected to keep the same reactivity at begin of core. By this way, the decreasing trend of reactivity at life of the core can be lowered. The reactivity can be maintained constant by increasing the fuel loading in the core gradually as the burnup deepens. Given a 20 MW fusion power, by reactivity control, the blanket energy multiplication is around 160~180 and tritium breed ratio 1.5~1.7 in 5 years, which is a better result than Sandia’s original design.
出处 《原子核物理评论》 CAS CSCD 北大核心 2014年第2期248-252,共5页 Nuclear Physics Review
基金 国家磁约束核聚变能研究专项(2012GB106001) 中国工程物理研究院基金资助项目(2011B0103030)~~
关键词 Z-Pinch惯性约束聚变 裂变 超铀元素 嬗变 Z-Pinch inertial confinement fusion fission transuranic element transmutation
  • 相关文献

参考文献1

二级参考文献9

  • 1李金鸿,张松柏,E.F.Kryuchkov,G.V.Tikhomirov.用于燃耗计算的三维MCCOOR程序系统[J].核动力工程,2006,27(3):16-19. 被引量:7
  • 2Judith F. MCNP--A General Monte Carlo N-Particle Transport Code[R]. Los Alamos National Laboratory, 1997.
  • 3Croft A G A User's Manual for ORIGEN2 Computer Code[R]. Oak Ridze National Laboratory, 1980.
  • 4Herman O W, Westfali-R M. ORIGEN-S: SCALE System Module to Calculate Fuel Depletion, Actinide Transmutation, Fission Product Buildup and Decay, and Associated Radiation Source Terms[R]. Oak Ridge National Laboratory, 1998.
  • 5Holly R. Trellue. Development of Montebums: A Code that Links MCNP and ORIGEN2 in an Automated Fashion for Burnup Calculations[R]. Los Alamos National Laboratory, 1998.
  • 6Kaiugin M, Shkarovsky D, Gehin J. A. VVER-1000 LEU and MOX Assembly Computational Benchmarks[R]. NEA/NSC/DOC, 2002.
  • 7Slessarev I, Istiako A. IAEA ADS Benchmark Results and Analysis. IAEA ADS Benchmark[C]. Madrid: TCM. 1999: 451-482.
  • 8余纲林,王侃,王煜宏.MCBurn——MCNP和ORIGEN耦合程序系统[J].原子能科学技术,2003,37(3):250-254. 被引量:26
  • 9蒋校丰,谢仲生.蒙卡-燃耗程序系统及ADS基准题的计算[J].核科学与工程,2003,23(4):325-331. 被引量:13

共引文献12

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部