期刊文献+

基于偏振成像的红外图像增强 被引量:7

Infrared image enhancement using polarization imaging
下载PDF
导出
摘要 针对红外图像对比度低,细节纹理较弱的特点,利用物体偏振特性提出基于偏振成像的红外图像增强方法,即获取红外偏振度图像并与源光强图像融合。首先,分析了偏振成像理论,利用偏振成像技术获取偏振图像。其次,为了能够充分获取偏振度图中的信息,运用剪切波变换对图像进行多尺度分解。最后,采用区域特征匹配融合策略,得到增强图像。为测试方法的有效性,搭建实验装置,进行实拍图像实验。主观与客观评价结果均表明,增强后的图像较原图像具有更加丰富的图像细节与偏振目标信息,对目标识别与探测具有重要意义。 Since the low contrast and lack of details in infrared imagery, a polarization imaging based enhancement method was proposed. Fusing the infrared polarization image and intensity image, this infrared image enhancement approach made the target areas prominent. Firstly, the polarization imaging theory was analyzed, and then polarization images were obtained using the polarization imaging technology. Secondly, the information of polarization images could be well acquired with the help of Shearlets based multi-scale image decomposition. Finally, the enhanced fused result was got with region feature matching. To test the effectiveness of this method, experimental device was built to get real images. Compared with original image, both the subjective and objective evaluation results indicate that the enhanced images have much more image details and polarization information, which is useful for target detection and recognition.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第1期39-47,共9页 Infrared and Laser Engineering
基金 国家自然科学基金(61275021 61178064)
关键词 红外图像增强 偏振 剪切波 区域特征匹配 融合 infrared image enhancement polarization Shearlets region feature matching fusion
  • 相关文献

参考文献5

二级参考文献35

共引文献103

同被引文献63

  • 1杨风暴.红外物理与技术[M].北京:电子工业出版社,2014.
  • 2L1 S, YANG B, HU J. Performance comparison of dif- ferent multi-resolution transforms for image fusion [J]. Information Fusion, 2011, 12(2): 74-84.
  • 3WANG Z, ZIOU D, ARMENAKIS C, et al. A com- parative analysis of image fusion methods [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6) : 1392-1402.
  • 4PAJARES G, de LACRUZ J M. A wavelet-based ira- age fusion tutorial [J]. Pattern Recognition, 2004, 37 (9) : 1855-1872.
  • 5YANG Fengbao, WEI H. Fusion of infrared polariza- tion and intensity images using support value transform and fuzzy combination rules [J]. Infrared Physics Technology, 2013, 60: 235-243.
  • 6CHEN Z H, ZHANG D X, YAN Q, et al. Fusion of visual and infrared image based on NSCT [J]. Applied Mechanics and Materials, 2014, 568: 643-646.
  • 7Fan Z, Bi D, He L, et al. Noise suppression and details enhancement for infrared image via novel prior[J]. Infrared Physics g> Technology, 2016(74): 44 52.
  • 8Jobson D J, Rahman Z U, Woodell G A. Properties and performance of a center/surround Retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451 462.
  • 9Kimmel R, Elad M, Shaked D, et al. A variational framework for Retinex[J]. International Journal of Computer Vision, 2003, 52(1): 7-23.
  • 10IEEE Transactions International Journal of Computer Vision Ma W, Morel J M, Osher S, et a!. An Ll-based variational model for Retinex theory and its application to medical images [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2011 : 153-160.

引证文献7

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部