摘要
针对卷积稀疏编码算法中特征映射的准确性的问题,为了进一步提高图像超分辨率重建的的质量,文中提出一种基于卷积稀疏自编码的图像超分辨率重建算法。该算法首先在预训练阶段利用稀疏自编码器对输入高低分辨率图像分别进行训练,得到对应的图像稀疏特征表示;然后再由卷积神经网络根据得到的稀疏系数共同训练相应的滤波器及特征映射函数并更新到最优解;最后由高分辨率滤波器和对应的稀疏表示系数卷积求和,得到高分辨率重建图像估计。实验结果显示,改进算法的峰值信噪比(PSNR)结果较卷积稀疏编码算法提高了近0.1 dB,有效提高了重建图像的质量。
For the accuracy of feature maps in convolutional sparse coding algorithm, in order to further improve the quality of image super-resolution reconstruction, an image super-resolution(SR) reconstruction algorithm based on convolutional sparse auto-encoder was proposed in this paper. In this algorithm,firstly, the input images were pre-trained with sparse auto-encoder for obtaining the feature of LR and HR image;after that, the convolutional neural network trained the corresponding filters and feature mapping function and updated to the optimal solution according to the obtained sparse coefficients;finally, the summation of the convolutions of high-resolution(HR) filters and the corresponding feature maps could reconstruct the HR image. The experimental results show that the peak signal-to-noise ratio(PSNR) of the proposed algorithm is nearly 0.1 d B higher than the CSC algorithm, which improves the quality of reconstructed images.
作者
张秀
周巍
段哲民
魏恒璐
Zhang Xiu;Zhou Wei;Duan Zhemin;Wei Henglu(School of Electronics and Information,Northwestern Polytechnical University,Xi′an 710129,China)
出处
《红外与激光工程》
EI
CSCD
北大核心
2019年第1期324-330,共7页
Infrared and Laser Engineering
基金
国家自然科学基金(61602383)
陕西省自然科学基金(2017JQ6019)
关键词
稀疏编码
卷积神经网络
自编码器
深度学习
超分辨率重建
sparse coding
convolutional neural network
auto-encoder
deep learning
super-resolution reconstruction