期刊文献+

基于半导体等离子体频率光学调控的太赫兹波调制系统 被引量:1

A terahertz wave modulation system based on optical modulation of the plasma frequency of a semiconductor
下载PDF
导出
摘要 介绍了一种太赫兹波光学调制系统,该系统首先通过刀片与半导体之间的狭缝实现太赫兹波和太赫兹表面等离子体波之间的耦合,然后通过改变照射到本征半导体表面的光强用以调控半导体表面的等离子体频率,使得半导体表面的等离子体频率在有光照和无光照条件下分别大于和小于其上传输的太赫兹表面等离子体波的频率,从而实现对在半导体表面传输的太赫兹表面等离子体波以及由其耦合出的太赫兹波的强度调控。该调制方法与传统方法相比具有调控频带宽、速度快、成本低、常温工作等优点,可用于太赫兹波通讯。仿真和实验结果进一步验证了该调制系统应用的可行性。 A terahertz(THz) wave optical modulation system was introduced. The modulation was based on the coupling of THz waves and THz surface plasmon by a simple slit between a razor blade and a semiconductor wafer. The modulation process was realized by changing the illumination intensity on the intrinsic semiconductor surface. With or without the optical illumination, the plasma frequency of the semiconductor was larger or smaller than the frequencies of the surface plasmon. Therefore, the THz surface plasmon propagating on the semiconductor and the THz wave coupled from the surface plasmon can be switched on and off. In comparison with conventional THz modulation approaches, this method has the advantages of wide modulation bandwidth, high speed, low cost and room temperature operation etc., which are favorable to THz wave communication applications. The simulation and experimental results prove the feasibility of the THz wave modulation system.
作者 杨涛 葛嘉程 周源 黄维 Yang Tao;Ge Jiacheng;Zhou Yuan;Huang Wei(Key Laboratory for Organic Electronics and Information Displays,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2019年第2期54-59,共6页 Infrared and Laser Engineering
基金 国家自然科学基金面上项目(61377019) 江苏省自然科学基金面上项目(BK20151512) 固体微结构国家重点实验室开放课题(M30050) 南京邮电大学校级科研项目(NY217085 NY218074)
关键词 太赫兹 表面等离子体波 半导体 等离子体频率 载流子浓度 terahertz surface plasmon semiconductor plasma frequency carrier density
  • 相关文献

参考文献1

二级参考文献90

  • 1Xue W R, Guo Y N, Zhang W M 2010 Chin. Phys. B 19 017302.
  • 2Liu B C, Yu L, Lu Z X 2011 Chin. Phys. B 20 037302.
  • 3Ritchie R H 1957 Phys. Rev. 106 874.
  • 4Pines D, Bohm D 1952 Phys. Rev. 85 338.
  • 5Pines D 1956 Rev. Mod. Phys. 28 184.
  • 6Stern E A, Ferrell R A 1960 Phys. Rev. 120 130.
  • 7Pitarke J M, Silkin V M, Chulov E V, Echenique P M 2007 Rep. Prog. Phys. 70 1.
  • 8Li H H, Chen J, Wang Q K 2010 Chin. Phys. B 19 114203.
  • 9Brongersma M L, Shalaev V M 2010 Science 328 440.
  • 10Hubert A J, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R 2008 Nano Lett. 8 3766.

共引文献3

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部