期刊文献+

一种基于闭环优化的新型鲁棒预测控制方法 被引量:1

Novel Robust predictive control algorithm based on closed-loop optimization.
下载PDF
导出
摘要 针对带约束的凸多面体线性不确定模型,提出了一种新型鲁棒预测控制方法.它采用离散化的不确定模型构造最小一最大优化控制问题,并在其中直接引入状态反馈机制.与其他最小-最大预测控制方法相比,这种方法等效于增加了控制序列的长度,为优化问题增加了更多的自由度,从而扩大了可行域.作为最小化目标的是离散化不确定系统在整个预测时域上二次型成本函数的最大值,而不是各预测阶段对应成本项的上界之和,从而减少了与最小-最大优化相关的方程个数,有利于降低计算复杂性.文中进一步证明了不确定系统的闭环稳定性取决于优化问题在初始时刻的可行性,并将优化问题转化为线性矩阵不等式形式.最后,以数值仿真例子验证了方法的有效性. A novel robust predictive control scheme was presented for constrained linear time-varying systems with polytopic uncertainty. Compared with other similar methods, it has the following characteristics. Firstly, the min-max optimal control problem is formulated using the discretized uncertain models and the state feedback mechanism is also introduced directly to it. Thus more freedom is added to the constrained optimal problem and the feasible region is effectively enlarged. Secondary, the minimization object is the cost on the whole predictive horizon, not the sum of the upper bounds of stepwise cost. This leads to a notable reduction in number of equations pertaining to min-max optimization. Furthermore , the robust stability is proved to depend on the feasibility of the optimization problem at the initial time and the optimization problem is formulated in terms of LMls. Finally, a numerical example was used to verify the effectiveness of the presented method.
出处 《浙江大学学报(理学版)》 CAS CSCD 2003年第1期50-55,114,共7页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(69974035) 教育部优秀青年教师教学和科研奖励基金资助项目
关键词 闭环优化 鲁棒预测控制 约束条件 凸多面体不确定性 最小-最大优化 线性矩阵不等式 Robust predictive control constrains polytopic uncertainty min-max optimization LMI
  • 相关文献

参考文献9

  • 1[1]RAWLINGS J B, MUSKE K R. The stability of constrained receding horizon control [J]. IEEE Transactions on Automatic Control, 1993, 38 (10): 1512-1516.
  • 2[2]MAYNE D Q, RAWLINGS J B, RAO C V, et al.Constrained model predictive control: stability and optimality [J]. Automatica, 2000, 36:789- 814.
  • 3[3]CHEN H, ALLGOWER F. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability [J]. Automatica, 1998,14(10): 1205-1217.
  • 4[4]KOUVARITAKIS B, ROSSIER J A, SCHUURMANS J. Efficient robust predictive control [J].IEEE Transactions on Automatic Control, 2000, 45(8): 1545-1549.
  • 5[5]KOTHARE M V, BALAKRISHNAN V, MORARI M. Robust constrained model predictive control using linear matrix inequalities [J]. Automatica, 1996, 32(10): 1361-1379.
  • 6[6]SCOKAERT P O M, MAYNE D Q. Min-max feedback model predictive control for constrained linear systems [J]. IEEE Transactions on Automatic Control, 1998, 43(8): 1136-1142.
  • 7[7]CASAVOLA A, GIANNELLI M, MOSCA E. MinMax predictive control strategies for input-saturated polytopic uncertain systems [J]. Automatica, 2000,36: 125-133.
  • 8[8]SCHUURMANS J, ROSSIER J A. Robust predictive control using tight sets of predicted states [J]. IEE Proceedings of Control Theory and Application,2000, 147(1): 13-18.
  • 9[9]LEE J H, YU Z H. Worst-case formulations of model predictive control for systems with bounded parameters [J]. Automatica, 1997, 33(5): 763-781.

同被引文献13

  • 1邵汉永,冯纯伯.二次型耗散线性离散系统的鲁棒性分析与控制[J].控制与决策,2005,20(2):142-146. 被引量:7
  • 2董心壮,张庆灵.线性广义系统的鲁棒严格耗散控制[J].控制与决策,2005,20(2):195-198. 被引量:11
  • 3董心壮,张庆灵.滞后离散广义系统的鲁棒严格耗散控制[J].控制理论与应用,2005,22(5):743-747. 被引量:12
  • 4王红茹,王常虹,高会军.时滞离散马尔可夫跳跃系统的鲁棒故障检测[J].控制与决策,2006,21(7):796-800. 被引量:9
  • 5HILL D J, MOLAND P J. Stability of nonlinear dissipative systems[J]. IEEE Trans on Automatic Control, 1976,21(5) :708--711.
  • 6TAN Z, SOH Y C, XIE L. Dissipative control for linear discrete-time systems [J]. Automatica, 1999, 35 (9) : 1557-- 1564.
  • 7DONG X Z. Robust strictly dissipative control for discrete singular systems[J]. IET Control Theory Appl, 2007,1(4):1060--1067.
  • 8XU S Y, CHEN T. Robust control for uncertain stochastic systems with state delay[J]. IEEE Transaction on Aotomatiea Control, 2004,47 ( 12 ) : 2089 -- 2094.
  • 9KANG Y, ZHANG J F, GE S S. Robust output feedback H∞ control of uncertain Markovian jump systems with mode-dependent time-delays[J]. International J of Control, 2008,81(1) :43--61.
  • 10LAM J, SHU Z, XU S, et al. Robust H∞ control of descriptor discrete-time Markovian jump systems[J]. International J of Control, 2007,80 (3) : 374 - 385.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部