期刊文献+

基于改进随机森林算法的股票趋势预测 被引量:5

Stock Trend Prediction Based on Improved Random Forest Algorithm
下载PDF
导出
摘要 针对目前股票趋势预测中随机森林算法无法对特征进行选择问题,提出一种离散二进制粒子群算法与随机森林算法相结合的混合算法。计算不同的技术指标作为输入特征,每一个特征都有4个不同时间跨度:3,5,10,15天,然后用离散二进制粒子群算法对特征进行优化选择。采用苹果公司、亚马逊公司、微软公司的股票历史数据进行仿真实验,实验结果与随机森林算法相比,准确率显著提高,苹果公司股票趋势预测的准确率达到93.0%,亚马逊公司达到90.5%,微软公司达到90.4%。 In view of the problem that the random forest algorithm can’t select features in current stock trend forecasting, a hybrid algorithm combining discrete binary particle swarm optimization and random forest algorithm is proposed. Different technical indicators are calculated as input features. Each feature has four different time spans: 3, 5, 10, and 15 days, then use discrete binary particle swarm optimization algorithm to optimize the features. The simulation results were carried out using the stock historical data of Apple, Amazon and Microsoft and compared with the random forest algorithm is significantly improved. The accuracy of Apple’s stock trend forecast reached 93.0%, and Amazon’s reached 90.5%, Microsoft reached 90.4%.
作者 方昕 李旭东 曹海燕 潘鹏 FANG Xin;LI Xudong;CAO Haiyan;PAN Peng(School of Communication Engineering,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处 《杭州电子科技大学学报(自然科学版)》 2019年第2期22-27,共6页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学青年基金资助项目(61501158)
关键词 股票趋势预测 技术指标 特征选择 改进的随机森林算法 stock trend forecast technical indicators select features improved random forest algorithm
  • 相关文献

参考文献1

二级参考文献24

  • 1Breiman L.Bagging predictors[J].Machine Learning,1996,24(2):123-140.
  • 2Ho T.The random subspace method for constructing decision forests[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(8):832-844.
  • 3Breiman L.Random forests[J].Machine Learning,2001,45(1):5-32.
  • 4Zhang H,Wang M.Search for the smallest random forest[J].Statistics and ITS Interface,2009,2(3).
  • 5Díaz-Uriarte R,De Andres S A.Gene selection and classification of microarray data using random forest[J].BMC Bioinformatics,2006,7(1).
  • 6Svetnik V,Liaw A,Tong C,et al.Random forest:a classification and regression tool for compound classification and QSAR modeling[J].Journal of Chemical Information and Computer Sciences,2003,43(6):1947-1958.
  • 7Oshiro T M,Perez P S,Baranauskas J A.How many trees in a random forest[M]//Machine learning and data mining in pattern recognition.Berlin Heidelberg:Springer,2012:154-168.
  • 8Kulkarni V Y,Sinha P K.Pruning of random forest classifiers:a survey and future directions[C]//2012 International Conference on Data Science&Engineering(ICDSE),2012:64-68.
  • 9Dietterich T G.Approximate statistical tests for comparing supervised classification learning algorithms[J].Neural Computation,1998,10(7):1895-1923.
  • 10Alpaydm E.Combined 5×2 cv F test for comparing supervised classification learning algorithms[J].Neural Computation,1999,11(8):1885-1892.

共引文献57

同被引文献27

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部