期刊文献+

一种快速高效的控制向量参数化优化方法 被引量:1

A Fast and Efficient Control Vector Parameter Optimization Method
下载PDF
导出
摘要 为了更合理地划分动态优化问题离散时间网格,解决控制向量参数化方法逼近精度和计算时间之间的矛盾,提出一种高效的非均匀自适应网格精细化控制策略。通过斜率分析控制参数的变化趋势,对斜率较小的时间节点进行合并,剔除不必要的离散网格;对不同变化趋势的时间网格插入数量不等的时间节点,提高函数逼近的精度。并且结合变时间节点技巧,找到准确的切换时间节点,确保求解的准确性。通过2个经典实例验证了所提方法的有效性。与传统控制向量参数化方法对比,计算成本较低,并可获得更准确的优化结果。 In order to divide the discrete time grid of dynamic optimization problem more reasonably, and to solve the contradiction between approximation accuracy and calculation time of control vector parameterization method, an efficient non-uniform adaptive mesh refinement control strategy is proposed. By analyzing the trend of the control parameters by slope analysis, the time nodes with smaller slopes are combined to eliminate unnecessary discrete meshes;the time grids with different variation trends are inserted into time nodes with different numbers to improve the accuracy of function approximation. And combined with the technique of the variable time nodes, the accurate switching time nodes are found to ensure the accuracy of the solution. The effectiveness of the proposed method is verified by two classical complex examples, compared with the traditional control vector parameterization method, the calculation cost is lower and more accurate optimization results can be obtained.
作者 徐炜峰 江爱朋 蒋恩辉 张全南 XU Weifeng;JIANG Aipeng;JIANG Enhui;ZHANG Quannan(School of Automation,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处 《杭州电子科技大学学报(自然科学版)》 2019年第2期40-46,共7页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然基金资助项目(61374142) 浙江省公益技术应用研究资助项目(2017C31065)
关键词 动态优化 最优控制 控制向量参数化 网格划分 dynamic optimization optimal control control vector parameterization mesh generation
  • 相关文献

参考文献1

二级参考文献21

  • 1Zhou Y, Liu X. Control parameterization-based adaptive particle swarm approach for solving chemical dynamic optimization problems [J]. Chemical Engineering & Technology, 2014, 37 (4): 692-702.
  • 2Kirk D E. Optimal Control Theory: An Introduction[M]. New York: Dover Publications, 2004.
  • 3Binder T, Cruse A, Cruz Villar C A, Marquardt W. Dynamic optimization using a wavelet based adaptive control vector parameterization strategy [J]. Computers & Chemical Engineering, 2000, 24 (2-7): 1201-1207.
  • 4Schlegel M, Stockmann K, Binder T, Marquardt W. Dynamic optimization using adaptive control vector parameterization [J]. Computers & Chemical Engineering, 2005, 29 (8): 1731-1751.
  • 5Assassa F, Marquardt W. Dynamic optimization using adaptive direct multiple shooting [J]. Computers & Chemical Engineering, 2014, 60: 242-259.
  • 6Srinivasan B, Palanki S, Bonvin D. Dynamic optimization of batchprocesses ([): Characterization of the nominal solution [J]. Computers & ChemiealEngineering, 2003, 27 (1): 1-26.
  • 7Szymkat M, Korytowski A. Method of monotone structural evolution for control and state constrained optimal control problems//Proceedings of the European Control Conference [C]. University of Cambridge, UK, 2003.
  • 8Teo K L, Jennings L S, Lee H W J, Rehbock V. The control parameterization enhancing transform for constrained optimal control problems [J]. The Journal of the Australian Mathematical Society, Series B, Applied Mathematics, 1999, 40 (3): 314-335.
  • 9Loxton R C, Teo K L, Rehbock V. Optimal control problems with multiple characteristic time points in the objective and constraints [J]. Automatica, 2008, 44 (11): 2923-2929.
  • 10Loxton R C, Teo K L, Rehbock V, Yiu K F C. Optimal control problems with a continuous inequality constraint on the state and the control [J]. Automatica, 2009, 45 (10): 2250-2257.

共引文献2

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部