摘要
提出了一种新的四点三重插值曲线细分法和一种含参数的三次B-样条曲线细分法,利用提出的这两种曲线细分方法得到了一种插值与逼近混合的三重曲线细分法。这种混合细分法将插值细分和逼近细分统一为同一格式。给出了这种混合细分法的几何解释,分析了其连续性,并将其推广到曲面情形,提出了四边形网格上的1-9插值曲面细分法和张量积三次B-样条曲面细分法。利用这两种曲面细分法,得到了插值与逼近相混合的三重曲面细分法,并分析了其连续性。数值实例表明,方法是合理有效的。
A new four-point ternary interpolating curve subdivision scheme and a cubic B-spline curve subdivision scheme with parameters are proposed. By using the two proposed methods, a ternary curve subdivision scheme which blends interpolating and approximating is obtained. This blending subdivision scheme can unify the interpolating subdivision and the approximating subdivision. A geometric interpretation of this blending subdivision scheme is given, and its continuity is analyzed. We generalize this method to the surface case. We propose a 1-9 interpolating surface subdivision scheme and a tensor product cubic B-spline surface subdivision scheme on the quadrilateral mesh, and use them to obtain a kind of ternary surface subdivision scheme that blends interpolation and approximation. The continuity of this scheme is analyzed. The numerical example shows that the method is reasonable and effective.
作者
檀结庆
朱星辰
黄丙耀
蔡蒙琪
曹宁宁
TAN Jieqing;ZHU Xingchen;HUANG Bingyao;CAI Mengqi;CAO Ningning(School of Mathematics,Hefei University of Technology,Hefei 230601,China)
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2019年第2期142-151,共10页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(61472466)
关键词
三重细分法
混合型
插值
逼近
曲线
曲面
ternary subdivision
blending
interpolating
approximating
curve
surface