摘要
本文主要内容是:①构造了验证两个六阶拉丁方计数为34的算法.②设A是任意的一个六阶拉丁方Y=(?)其中n_1,n_2,…,n_6是1,2,3…,6的某一种排列,P:形为Y且与A的每列相比恰有一位元素相同的列全体,则N(P,A)=|P|≤32,N(P,A,k)≤8(k=1,2,…,6).③任何四个六阶拉丁方其计数<34.
①The paperoffersan al gorithm for testing and verifying two Lat in squares of order six with count of 34 ②Let A be an arbitrary La-tin square of order six, y = where n1, n2,…n6,s i an arangement of1, 2… 6 , P is be the fami ly of all y which have only one identical element with each column of A, then N(P, A) = P|≤32; N (P, A, k) ≤ 8 (k = 1, 2 … 6) ③Any four Latin squares of order six with less than 34
出处
《湖州师范学院学报》
1988年第6期42-46,共5页
Journal of Huzhou University
关键词
拉丁方
计数
算法
阶
Latin square, count, Algorithm, Order